Gene References


VCAM1 (vascular cell adhesion molecule 1)

Besemer J, Harant H, Wang S et al. Selective inhibition of cotranslational translocation of vascular cell adhesion molecule 1. Nature 2005; 436:290-3.

Campbell DJ, Woodward M, Chalmers JP et al. Soluble vascular cell adhesion molecule 1 and N-terminal pro-B-type natriuretic peptide in predicting ischemic stroke in patients with cerebrovascular disease. Arch Neurol 2006; 63:60-5.

Dansky HM, Barlow CB, Lominska C et al. Adhesion of monocytes to arterial endothelium and initiation of atherosclerosis are critically dependent on vascular cell adhesion molecule-1 gene dosage. Arterioscler Thromb Vasc Biol 2001; 21:1662-7.

Garmy-Susini B, Jin H, Zhu Y, Sung RJ, Hwang R, Varner J. Integrin alpha-4-beta-1-VCAM-1-mediated adhesion between endothelial and mural cells is required for blood vessel maturation. J Clin Invest 2005; 115:1542-51.

Garrison JL, Kunkel EJ, Hedge RS, Taunton J. A substrate-specific inhibitor of protein translocation into the endoplasmic reticulum. Nature 2005; 436:285-9.

Gurtner GC, Davis V, Li H, McCoy MJ, Sharpe A, Cybulsky MI. Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev 1995; 9:1-14.

Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Nat Acad Sci USA 2008; 105:1516-21.

Idelman G, Taylor JG, Tongbai R et al. Functional profiling of uncommon VCAM1 promoter polymorphisms prevalent in African American populations. Hum Mutat 2007; 28:824-9.

Ito A, Miyake M, Morishita M, Ito K, Torii S, Sakamoto T. Dexamethasone reduces lung eosinophilia, and VCAM-1 and ICAM-1 expression induced by Sephadex beads in rats. Eur J Pharmacol 2003; 468:59-66.

Lan Q, Zhang L, Shen M et al. Polymorphisms in cytokine and cellular adhesion molecule genes and susceptibility to hematotoxicity among workers exposed to benzene. Cancer Res 2005; 65:9574-81.

Minn AJ, Gupta GP, Siegel PM et al. Genes that mediate breast cancer metastasis to lung. Nature 2005; 436:518-24.

Taylor JG, Tang DC, Savage SA et al. Variants in the VCAM1 gene and risk for symptomatic stroke in sickle cell disease. Blood 2002; 100:4303-9.

VDR (vitamin D (1,25- dihydroxyvitamin D3) receptor)

Ates O, Dolek B, Dalyan L, Musellim B, Ongen G, Topal-Sarikaya A. The association between BsmI variant of vitamin D receptor gene and susceptibility to tuberculosis. Mol Biol Rep 2011; 38:2633-6.

Bai Y, Yu Y, Yu B et al. Association of vitamin D receptor polymorphisms with the risk of prostate cancer in the Han population of Southern China. BMC Med Genet 2009; 10:125.

Colin EM, Uitterlinden AG, Meurs JBJ et al. Interaction between vitamin D receptor genotype and estrogen receptor alpha genotype influences vertebral fracture risk. J Clin Endocr Metab 2003; 88:3777-84.

Dayangac-Erden D, Karaduman A, Erdem-Yurter H. Polymorphisms of vitamin D receptor gene in Turkish familial psoriasis patients. Arch Dermatol Res 2007; 299:487-91.

Dogan I, Onen HI, Yurdakul AS et al. Polymorphisms in the vitamin D receptor gene and risk of lung cancer. Med Sci Monit 2009; 15:232-42.

Fang Y, van Meurs JBJ, d’Alesio A et al. Promoter and 3-prime-untranslated-region haplotypes in the vitamin D receptor gene predispose to osteoporotic fracture: the Rotterdam Study. Am J Hum Genet 2005; 77:807-23.

Froicu M, Zhu Y, Cantorna MT. Vitamin D receptor is required to control gastrointestinal immunity in IL-10 knockout mice. Immunology 2006; 117:310-8.

Gapska P, Scott RJ, Serrano-Fernandez P et al. Vitamin D receptor variants and the malignant melanoma risk: a population-based study. Cancer Epidemiol 2009; 33:103-7.

Garnero P, Munoz F, Borel O, Sornay-Rendu E, Delmas PD. Vitamin D receptor gene polymorphisms are associated with the risk of fractures in postmenopausal women, independently of bone mineral density. J Clin Endocrinol Metab 2005; 90:4829-35.

Healy KD, Vanhooke JL, Prahl JM, DeLuca HF. Parathyroid hormone decreases renal vitamin D receptor expression in vivo. Proc Nat Acad Sci USA 2005; 102:4724-8.

Kato S, Yoshizazawa T, Kitanaka S, Murayama A, Takeyama K. Molecular genetics of vitamin D- dependent hereditary rickets. Horm Res 2002; 57:73-8.

Lee YH, Bae SC, Choi SJ, Ji JD, Song GG. Associations between vitamin D receptor polymorphisms and susceptibility to rheumatoid arthritis and systemic lupus erythematosus: a meta-analysis. Mol Biol Rep 2011; 38:3643-51.

Lin Y, Mao Q, Zheng X, Chen H, Yang K, Xie L. Vitamin D receptor genetic polymorphisms and the risk of urolithiasis: A meta-analysis. Urol Int 2011; 86:249-55.

Liu PT, Stenger S, Li H et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006; 311:1770-3.

Massart F, Marcucci G, Brandi ML. Pharmacogenetics of bone treatments: the VDR and ERalpha gene story. Pharmacogenomics 2008; 9:733-46.

Masuyama R, Stockmans I, Torrekens S et al. Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J Clin Invest 2006; 116:3150-9.

Motsinger-Reif AA, Antas PR, Oki NO, Levy S, Holland SM, Sterling TR. Polymorphisms in IL-1beta, vitamin D receptor Fok1, and Toll-like receptor 2 are associated with extrapulmonary tuberculosis. BMC Med Genet 2010; 11:37.

Orlow I, Roy P, Reiner AS et al. Vitamin D receptor polymorphisms in patients with cutaneous melanoma. Int J Cancer 2011. doi:10. 1002/ijc. 26023.

Penna-Martinez M, Ramos-Lopez E, Stern J et al. Vitamin D receptor polymorphisms in differentiated thyroid carcinoma. Thyroid 2009; 19:623-8.

SabbaghY, Carpenter TO, Demay MB. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Nat Acad Sci USA 2005; 102:9637-42.

Seremak-Mrozikiewicz A, Drews K, Mrozikiewicz PM et al. Correlation of vitamin D receptor gene (VDR) polymorphism with osteoporotic changes in Polish postmenopausal women. Neuro Endocrinol Lett 2009; 30:540-6.

Shafeghati Y, Momenin N, Esfahani T, Reyniers E, Wuyts W. Vitamin D-dependent rickets type II: report of a novel mutation in the vitamin D receptor gene. Arch Iran Med 2008; 11:330-4.

Shah S, Islam MN, Dakshanamurthy S et al. The molecular basis of vitamin D receptor and beta-catenin crossregulation. Molec Cell 2006; 21:799-809.

Tamez S, Norizoe C, Ochiai K et al. Vitamin D receptor polymorphisms and prognosis of patients with epithelial ovarian cancer. Br J Cancer 2009; 101:1957-60.

Testa A, Mallamaci F, Benedetto FA et al. Vitamin D receptor (VDR) gene polymorphism is associated with left ventricular (LV) mass and predicts left ventricular hypertrophy (LVH) progression in end-stage renal disease (ESRD) patients. J Bone Miner Res 2010; 25:313-9.

Touvier M, Chan DS, Lau RN et al. Meta-analyses of vitamin D intake, 25-hydroxyvitamin D status, vitamin D receptor polymorphisms and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2011; 20:1003-16.

Yasovanthi J, Venkata Karunakar K, Sri Manjari K et al. Association of vitamin D receptor gene polymorphisms with BMD and their effect on 1, 25-dihydroxy vitamin D3 levels in pre- and postmenopausal South Indian women from Andhra Pradesh. Clin Chim Acta 2011; 412:541-4.

VEGFA (vascular endothelial growth factor A)

Awata T, Inoue K, Kurihara S et al. A common polymorphism in the 5’-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes 2002; 51:1635-9.

Bányász I, Bokodi G, Vásárhelyi B et al. Genetic polymorphisms for vascular endothelial growth factor in perinatal complications. Eur Cytokine Netw 2006; 174:266-70.

Bartolomucci A, La Corte G, Possenti R et al. TLQP-21, a VGF-derived peptide, increases energy expenditure and prevents the early phase of diet-induced obesity. Proc Nat Acad Sci USA 2006; 103:14584-9.

Bradbury PA, Zhai R, Ma C et al. Vascular endothelial growth factor polymorphisms and esophageal cancer prognosis. Clin Cancer Res 2009; 15:4680-5.

Canu N, Possenti R, Ricco AS, Rocchi M, Levi A. Cloning, structural organization analysis, and chromosomal assignment of the human gene for the neurosecretory protein VGF. Genomics 1997; 45:443-6.

del Bo R, Scarlato M, Ghezzi S et al. Vascular endothelial growth factor gene variability is associated with increased risk for AD. Ann Neurol 2005; 57:373-80.

Douvaras P, Antonatos DG, Kekou K et al. Association of VEGF gene polymorphisms with the development of heart failure in patients after myocardial infarction. Cardiology 2009; 114:11-8.

Gentilini D, Somigliana E, Vigano P, Vignali M, Busacca M, Di Blasio AM. The vascular endothelial growth factor +405G>C polymorphism in endometriosis. Hum Reprod 2008; 1:211-5.

Guan X, Zhao H, Niu J, Tang D, Ajani JA, Wei Q. The VEGF -634G>C promoter polymorphism is associated with risk of gastric cancer. BMC Gastroenterol 2009; 9:77.

Günesacar R, Opelz G, Erken E et al. VEGF 936 C/T gene polymorphism in renal transplant recipients: association of the T allele with good graft outcome. Hum Immunol 2008; 7:599-602.

Hsiao PJ, Lu MY, Chiang FY, Shin SJ, Tai YD, Juo SH. Vascular endothelial growth factor gene polymorphisms in thyroid cancer. J Endocrinol 2007; 2:265-70.

Hunsberger JG, Newton SS, Bennett AH et al. Antidepressant actions of the exercise-regulated gene VGF. Nat Med 2007; 13:1476-82.

James JM, Gewolb C, Bautch VL. Neurovascular development uses VEGF-A signaling to regulate blood vessel ingression into the neural tube. Development 2009; 136:833-41.

Janik-Papis K, Zaras M, Krzyzanowska A et al. Association between vascular endothelial growth factor gene polymorphisms and age-related macular degeneration in a Polish population. Exp Mol Pathol 2009; 87:234-8.

Kim DH, Lee NY, Lee MH, Sohn SK, Do YR, Park JY. Vascular endothelial growth factor (VEGF) gene (VEGFA) polymorphism can predict the prognosis in acute myeloid leukaemia patients. Br J Haematol 2008; 1:71-9.

Kim JG, Chae YS, Sohn SK et al. Vascular endothelial growth factor gene polymorphisms associated with prognosis for patients with colorectal cancer. Clin Cancer Res 2008; 1:62-6.

Lee EJ, Oh B, Lee JY, Kimm K, Park JM, Baek KH. Association study between single nucleotide polymorphisms in the VEGF gene and polycystic ovary syndrome. Fertil Steril 2008; 89:1751-9.

Lee HC, Chang TY, Yeung CY et al. Genetic variation in the vascular endothelial growth factor gene is associated with biliary atresia. J Clin Gastroenterol 2010; 44:135-9.

Lin TH, Su HM, Wang CL et al. Vascular endothelial growth factor polymorphisms and extent of coronary atherosclerosis in Chinese population with advanced coronary artery disease. Am J Hypertens 2010; 23:960-6.

Liu Q, Li Y, Zhao J et al. Association of single nucleotide polymorphisms in VEGF gene with the risk of endometriosis and adenomyosis. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2009; 26:165-9.

Maltese P, Canestrari E, Ruzzo A et al. VEGF gene polymorphisms and susceptibility to colorectal cancer disease in Italian population. Int J Colorectal Dis 2009; 24:165-70.

Pabst S, Karpushova A, Diaz-Lacava A et al. VEGF gene haplotypes are associated with sarcoidosis. Chest 2010; 137:156-63.

Smach MA, Charfeddine B, Othman LB et al. -1154G/A and -2578C/A polymorphisms of the vascular endothelial growth factor gene in Tunisian Alzheimer patients in relation to beta-amyloid (1-42) and total tau protein. Neurosci Lett 2010; 472:139-42.

Steffensen KD, Waldstrøm M, Brandslund I, Jakobsen A. The relationship of VEGF polymorphisms with serum VEGF levels and progression-free survival in patients with epithelial ovarian cancer. Gynecol Oncol 2010; 117:109-16.

Tzanakis N, Gazouli M, Rallis G et al. Vascular endothelial growth factor polymorphisms in gastric cancer development, prognosis, and survival. J Surg Oncol 2006; 7:624-30.

Vidaurreta M, Sánchez-Muñoz R, Veganzones S et al. Vascular endothelial growth factor gene polymorphisms in patients with colorectal cancer. Rev Esp Enferm Dig 2010; 102:20-31.

Wu LM, Xie HY, Zhou L, Yang Z, Zhang F, Zheng SS. A single nucleotide polymorphism in the vascular endothelial growth factor gene is associated with recurrence of hepatocellular carcinoma after transplantation. Arch Med Res 2009; 40:565-70.

VGF (VGF nerve growth factor inducible)

Bartolomucci A, Possenti R, Levi A, Pavone F, Moles A. The role of the vgf gene and VGF-derived peptides in nutrition and metabolism. Genes Nutr 2007; 2:169-80.

Hahm S, Mizuno TM, Wu TJ et al. Targeted deletion of the Vgf gene indicates that the encoded secretory peptide precursor plays a novel role in the regulation of energy balance. Neuron 1999; 23:537-48.

Malberg JE, Monteggia LM. VGF, a new player in antidepressant action? Sci Signal 2008; 1:19.

Thakker-Varia S, Alder J. Neuropeptides in depression: role of VGF. Behav Brain Res 2009; 197:262-78.

VKORC1 (vitamin K epoxide reductase complex, subunit 1)

Aomori T, Yamamoto K, Oguchi-Katayama A et al. Rapid single-nucleotide polymorphism detection of cytochrome P450 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genes for the warfarin dose adjustment by the SMart-amplification process version 2. Clin Chem 2009; 55:804-12.

Au N, Rettie AE. Pharmacogenomics of 4-hydroxycoumarin anticoagulants. Drug Metab Rev 2008; 40:355-75.

Bodin L, Perdu J, Diry M, Horellou MH, Loriot MA. Multiple genetic alterations in vitamin K epoxide reductase complex subunit 1 gene (VKORC1) can explain the high dose requirement during oral anticoagulation in humans. J Thromb Haemost 2008; 6:1436-9.

Bodin L, Verstuyft C, Tregouet DA et al. Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Clin Pharmacol Ther 2007; 2:185-93.

Cavallari LH, Limdi NA. Warfarin pharmacogenomics. Curr Opin Mol Ther 2009; 11:243-51.

Chu PH, Huang TY, Williams J, Stafford DW. Purified vitamin K epoxide reductase alone is sufficient for conversion of vitamin K epoxide to vitamin K and vitamin K to vitamin KH(2). Proc Nat Acad Sci USA 2007; 103:19308-13.

Flockhart DA, O’Kane D, Williams MS et al. Pharmacogenetic testing of CYP2C9 and VKORC1 alleles for warfarin. Genet Med 2008; 10:139-50.

Gage BF, Eby C, Johnson JA et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther 2008; 84:326-31.

González Della Valle A, Khakharia S, Glueck CJ et al. VKORC1 variant genotypes influence warfarin response in patients undergoing total joint arthroplasty: a pilot study. Clin Orthop Relat Res 2009; 467:1773-80.

Harrington DJ, Gorska R, Wheeler R et al. Pharmacodynamic resistance to warfarin is associated with nucleotide substitutions in VKORC1. J Thromb Haemost 2008; 6:1663-70.

Huang SW, Chen HS, Wang XQ et al. Validation of VKORC1 and CYP2C9 genotypes on interindividual warfarin maintenance dose: a prospective study in Chinese patients. Pharmacogenet Genomics 2009; 19:226-34.

Jonas DE, McLeod HL. Genetic and clinical factors relating to warfarin dosing. Trends Pharmacol Sci 2009; 30:375-86.

Langley MR, Booker JK, Evans JP, McLeod HL, Weck KE. Validation of clinical testing for warfarin sensitivity: comparison of CYP2C9-VKORC1 genotyping assays and warfarin-dosing algorithms. J Mol Diagn 2009; 11:216-25.

Li C, Schwarz UI, Ritchie MD, Roden DM, Stein CM, Kurnik D. Relative contribution of CYP2C9 and VKORC1 genotypes and early INR response to the prediction of warfarin sensitivity during initiation of therapy. Blood 2009; 113:3925-30.

Li T, Lange LA, Li X et al. Polymorphisms in the VKORC1 gene are strongly associated with warfarin dosage requirements in patients receiving anticoagulation. J Med Genet 2006; 43:740-4.

Limdi NA, Beasley TM, Crowley MR et al. VKORC1 polymorphisms, haplotypes and haplotype groups on warfarin dose among African-Americans and European-Americans. Pharmacogenomics 2008; 9:1445-58.

Limdi NA, Wiener H, Goldstein JA, Acton RT, Beasley TM. Influence of CYP2C9 and VKORC1 on warfarin response during initiation of therapy. Blood Cells Mol Dis 2009; 43:119-28.

Loebstein R, Dvoskin I, Halkin H et al. A coding VKORC1 asp36tyr polymorphism prediposes to warfarin resistance. Blood 2007; 109:2477-80.

Meckley LM, Wittkowsky AK, Rieder MJ, Rettie AE, Veenstra DL. An analysis of the relative effects of VKORC1 and CYP2C9 variants on anticoagulation related outcomes in warfarin-treated patients. Thromb Haemost 2008; 100:229-39.

Momary KM, Shapiro NL, Viana MA, Nutescu EA, Helgason CM, Cavallari LH. Factors influencing warfarin dose requirements in African-Americans. Pharmacogenomics 2007; 8:1535-44.

Nakai K, Tsuboi J, Okabayashi H et al. Ethnic differences in the VKORC1 gene polymorphism and an association with warfarin dosage requirements in cardiovascular surgery patients. Pharmacogenomics 2007; 8:713-9.

Oldenburg J, Bevans CG, Fregin A et al. Current pharmacogenetic developments in oral anticoagulation therapy: the influence of variant VKORC1 and CYP2C9 alleles. Thromb Haemost 2007; 98:570-8.

Oner Ozgon G, Langaee TY, Feng H et al. VKORC1 and CYP2C9 polymorphisms are associated with warfarin dose requirements in Turkish patients. Eur J Clin Pharmacol 2008; 64:889-94.

Rieder MJ, Reiner AP, Gage BF et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. New Eng J Med 2005; 352:2285-93.

Schalekamp T, Brassé BP, Roijers JF et al. VKORC1 and CYP2C9 genotypes and phenprocoumon anticoagulation status: interaction between both genotypes affects dose requirement. Clin Pharmacol Ther 2007; 4:529-38.

Schwarz UI, Ritchie MD, Bradford Y et al. Genetic determinants of response to warfarin during initial anticoagulation. New Eng J Med 2008; 358:999-1008.

Sconce EA, Avery PJ, Wynne HA, Kamali F. Vitamin K epoxide reductase complex subunit 1 (VKORC1 ) polymorphism influences the anticoagulation response subsequent to vitamin K intake: a pilot study. J Thromb Haemost 2008; 6:1226-8.

Scott SA, Edelmann L, Kornreich R, Desnick RJ. Warfarin pharmacogenetics: CYP2C9 and VKORC1 genotypes predict different sensitivity and resistance frequencies in the Ashkenazi and Sephardi Jewish populations. Am J Hum Genet 2008; 82:495-500.

Shurin SB, Nabel EG. Pharmacogenetics-ready for prime time? New Eng J Med 2007; 358:1061-3.

Suarez-Kurtz G, Perini JA, Silva-Assunção E, Struchiner CJ. Relative contribution of VKORC1, CYP2C9, and INR response to warfarin stable dose. Blood 2009; 113:4125-6.

Takahashi H, Wilkinson GR, Nutescu EA et al. Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance does of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genomics 2006; 16:101-10.

Takeuchi F, McGinnis R, Bourgeois S et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet 2009. doi:10. 1371/journal. pgen. 1000433.

Wallin R, Wajih N, Hutson SM. VKORC1: a warfarin-sensitive enzyme in vitamin K metabolism and biosynthesis of vitamin K-dependent blood coagulation factors. Vitam Horm 2008; 78:227-46.

Wang D, Chen H, Momary KM, Cavallari LH, Johnson JA, Sadée W. Regulatory polymorphism in vitamin K epoxide reductase complex subunit 1 (VKORC1) affects gene expression and warfarin dose requirement. Blood 2008; 112:1013-21.

Wen MS, Lee M, Chen JJ et al. Prospective study of warfarin dosage requirements based on CYP2C9 and VKORC1 genotypes. Clin Pharmacol Ther 2008; 84:83-9.

Yang L, Ge W, Yu F, Zhu H. Impact of VKORC1 gene polymorphism on interindividual and interethnic warfarin dosage requirement-a systematic review and meta analysis. Thromb Res 2010; 125:159-66.

Yoshizawa M, Hayashi H, Tashiro Y et al. Effect of VKORC1-1639 G>A polymorphism, body weight, age, and serum albumin alterations on warfarin response in Japanese patients. Thromb Res 2009; 124:161-6.

 A B C D E F G H I K L M N O P R S T U V W X Z