Gene References

A B C D E F G H I K L M N O P R S T U V W X Z

G6PD (glucose-6-phosphate dehydrogenase)

Baird JK, Hoffman SL. Primaquine therapy for malaria. Clin Infect Dis 2004; 39:1336-45.

Beutler E, Duparc S; G6PD Deficiency Working Group. Glucose-6-phosphate dehydrogenase deficiency and antimalarial drug development. Am J Trop Med Hyg 2007; 77:779-89.

Clark TG, Fry AE, Auburn S et al. Allelic heterogeneity of G6PD deficiency in West Africa and severe malaria susceptibility. Eur J Hum Genet 2009; 17:1080-5.

Felix K, Rockwood LD, Pretsch W et al. Moderate G6PD deficiency increases mutation rates in the brain of mice. Free Radic Biol Med 2002; 32:663-73.

Gait JE. Hemolytic reactions to nitrofurantoin in patients with glucose-6-phosphate dehydrogenase deficiency: theory and practice. DICP 1990; 24:1210-3.

Gerr F, Frumkin H, Hodgins P. Hemolytic anemia following succimer administration in a glucose-6-phosphate dehydrogenase deficient patient. J Toxicol Clin Toxicol 1994; 32:569-75.

Hill DR, Baird JK, Parise ME, Lewis LS, Ryan ET, Magill AJ. Primaquine: report from CDC expert meeting on malaria chemoprophylaxis I. Am J Trop Med Hyg 2006; 75:402-15.

Hue NT, Charlieu JP, Chau TT et al. Glucose-6-phosphate dehydrogenase (G6PD) mutations and haemoglobinuria syndrome in the Vietnamese population. Malar J 2009; 8:152.

Lavelle KJ, Atkinson KF, Kleit SA. Hyperlactatemia and hemolysis in G6PD deficiency after nitrofurantoin ingestion. Am J Med Sci 1976; 272:201-4.

Legan SK, Rebrin I, Mockett RJ et al. Overexpression of glucose-6-phosphate dehydrogenase extends the life span of Drosophila melanogaster. J Biol Chem 2008; 283:32492-9.

Ruwende C, Hill A. Glucose-6-phosphate dehydrogenase deficiency and malaria. J Mol Med 1998; 76:581-8.

Ruwende C, Khoo SC, Snow RW et al. Natural selection of hemi- and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature 1995; 376:246-9.

Schuurman M, van Waardenburg D, Da Costa J, Niemarkt H, Leroy P. Severe hemolysis and methemoglobinemia following fava beans ingestion in glucose-6-phosphatase dehydrogenase deficiency: case report and literature review. Eur J Pediatr 2009; 168:779-82.

Yan JB, Xu HP, Xiong C et al. Rapid and reliable detection of glucose-6-phosphate dehydrogenase (G6PD) gene mutations in Han Chinese using high-resolution melting analysis. J Mol Diagn 2010; 12:305-11.

Youngster I, Arcavi L, Schechmaster Ret al. Medications and glucose-6-phosphate dehydrogenase deficiency: an evidence-based review. Drug Saf 2010; 33:713-26.

GABRA6 (gamma-aminobutyric acid (GABA) A receptor, alpha 6)

Chang YT, Sun HS, Fann CS et al. Association of the gamma-aminobutyric acid A receptor gene cluster with alcohol dependence in Taiwanese Han. Mol Psychiatry 2002; 7:828-9.

Desai R, Ruesch D, Forman SA. Gamma-amino butyric acid type A receptor mutations at beta2N265 alter etomidate efficacy while preserving basal and agonist-dependent activity. Anesthesiology 2009; 111:774-84.

Ikeda M, Iwata N, Suzuki T et al. Association analysis of chromosome 5 GABAA receptor cluster in Japanese schizophrenia patients. Biol Psychiatry 2005; 58:440-5.

Iwata N, Cowley DS, Radel M, Roy-Byrne PP, Goldman D. Relationship between a GABAA alpha 6 Pro385Ser substitution and benzodiazepine sensitivity. Am J Psychiatry 1999; 156:1447-9.

Jones A, Korpi ER, McKernan RM et al. Ligand-gated ion channel subunit partnerships: GABAA receptor alpha6 subunit gene inactivation inhibits delta subunit expression. J Neurosci 1997; 17:1350-62.

Petryshen TL, Middleton FA, Tahl AR et al. Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia. Mol Psychiatry 2005; 10:1074-88, 1057.

Radel M, Vallejo RL, Iwata N et al. Haplotype-based localization of an alcohol dependence gene to the 5q34 {gamma}-aminobutyric acid type A gene cluster. Arch Gen Psychiatry 2005; 62:47-55.

Rosmond R, Bouchard C, Björntorp P. Allelic variants in the GABA(A)alpha6 receptor subunit gene (GABRA6) is associated with abdominal obesity and cortisol secretion. Int J Obes Relat Metab Disord 2002; 26:938-41.

Uhart M, McCaul ME, Oswald LM, Choi L, Wand GS. GABRA6 gene polymorphism and an attenuated stress response. Mol Psychiatry 2004; 9:998-1006.

Wafford KA, Thompson SA, Thomas D, Sikela J, Wilcox AS, Whiting PJ. Functional characterization of human gamma-aminobutyric acidA receptors containing the alpha 4 subunit. Mol Pharmacol 1996; 50:670-8.

Yamada K, Watanabe A, Iwayama-Shigeno Y, Yoshikawa T. Evidence of association between gamma-aminobutyric acid type A receptor genes located on 5q34 and female patients with mood disorders. Neurosci Lett 2003; 349:9-12.

GCH1 (GTP cyclohydrolase 1)

Bandmann O, Nygaard TG, Surtees R, Marsden CD, Wood NW, Harding AE. Dopa-responsive dystonia in British patients: new mutations of the GTP-cyclohydrolase I gene and evidence for genetic heterogeneity. Hum Mol Genet 1996; 5:403-6.

Beyer K, Lao-Villadóniga JI, Vecino-Bilbao B, Cacabelos R, de la Fuente-Fernández R. A novel point mutation in the GTP cyclohydrolase I gene in a Spanish family with hereditary progressive and dopa responsive dystonia. J Neurol Neurosurg Psychiatry 1997; 62:420-1.

Campbell CM, Edwards RR, Carmona C et al. Polymorphisms in the GTP cyclohydrolase gene (GCH1) are associated with ratings of capsaicin pain. Pain 2009; 141:114-8.

Clot F, Grabli D, Cazeneuve C et al. Exhaustive analysis of BH4 and dopamine biosynthesis genes in patients with Dopa-responsive dystonia. Brain 2009; 132:1753-63.

Cobb SA, Wider C, Ross OA et al. GCH1 in early-onset Parkinson’s disease. Mov Disord 2009; 24:2070-5.

Doehring A, Antoniades C, Channon KM, Tegeder I, Lötsch J. Clinical genetics of functionally mild non-coding GTP cyclohydrolase 1 (GCH1) polymorphisms modulating pain and cardiovascular risk. Mutat Res 2008; 659:195-201.

Furukawa Y, Kish SJ, Bebin EM et al. Dystonia with motor delay in compound heterozygotes for GTP-cyclohydrolase I gene mutations. Ann Neurol 1998; 44:10-6.

Hagenah J, Saunders-Pullman R, Hedrich K et al. High mutation rate in dopa-responsive dystonia: detection with comprehensive GCHI screening. Neurology 2005; 64:908-11.

Horvath GA, Stockler-Ipsiroglu SG, Salvarinova-Zivkovic R et al. Autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia: evidence of a phenotypic continuum between dominant and recessive forms. Mol Genet Metab 2008; 94:127-31.

Hwu WL, Wang PJ, Hsiao KJ, Wang TR, Chiou YW, Lee YM. Dopa-responsive dystonia induced by a recessive GTP cyclohydrolase I mutation. Hum Genet 1999; 105:226-30.

Ichinose H, Ohye T, Takahashi E et al. Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nat Genet 1994; 8:236-42.

Ichinose H, Suzuki T, Inagaki H, Ohye T, Nagatsu T. Molecular genetics of dopa-responsive dystonia. Biol Chem 1999; 380:1355-64.

Kim DH, Dai F, Belfer I et al. Polymorphic variation of the guanosine triphosphate cyclohydrolase 1 gene predicts outcome in patients undergoing surgical treatment for lumbar degenerative disc disease. Spine (Phila Pa 1976) 2010; 35:1909-14.

Kim H, Dionne RA. Lack of influence of GTP cyclohydrolase gene (GCH1) variations on pain sensitivity in humans. Mol Pain 2007; 3:6.

Longo N. Disorders of biopterin metabolism. J Inherit Metab Dis 2009; 32:333-42.

Lötsch J, Belfer I, Kirchhof A et al. Reliable screening for a pain-protective haplotype in the GTP cyclohydrolase 1 gene (GCH1) through the use of 3 or fewer single nucleotide polymorphisms. Clin Chem 2007; 53:1010-5.

Lötsch J, Klepstad P, Doehring A, Dale O. A GTP cyclohydrolase 1 genetic variant delays cancer pain. Pain 2010; 148:103-6.

Nardocci N, Zorzi G, Blau N et al. Neonatal dopa-responsive extrapyramidal syndrome in twins with recessive GTPCH deficiency. Neurology 2003; 60:335-7.

Segawa M. Hereditary progressive dystonia with marked diurnal fluctuation. Brain Dev 2000; 22 Suppl 1:65-80.

Skrygan M, Bartholomé B, Bonafé L, Blau N, Bartholomé K. A splice mutation in the GTP cyclohydrolase I gene causes dopa-responsive dystonia by exon skipping. J Inherit Metab Dis 2001; 24:345-51.

Steinberger D, Trübenbach J, Zirn B, Leube B, Wildhardt G, Müller U. Utility of MLPA in deletion analysis of GCH1 in dopa-responsive dystonia. Neurogenetics 2007; 8:51-5.

Tegeder I, Adolph J, Schmidt H, Woolf CJ, Geisslinger G, Lötsch J. Reduced hyperalgesia in homozygous carriers of a GTP cyclohydrolase 1 haplotype. Eur J Pain 2008; 12:1069-77.

Tegeder I, Costigan M, Griffin RS et al. GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. Nat Med 2006; 12:1269-77.

GGCX (gamma-glutamyl carboxylase)

Crosier MD, Peter I, Booth SL, Bennett G, Dawson-Hughes B, Ordovas JM. Association of sequence variations in vitamin K epoxide reductase and gamma-glutamyl carboxylase genes with biochemical measures of vitamin K status. J Nutr Sci Vitaminol 2009; 55:112-9.

Herman D, Peternel P, Stegnar M, Breskvar K, Dolzan V. The influence of sequence variations in factor VII, gamma-glutamyl carboxylase and vitamin K epoxide reductase complex genes on warfarin dose requirement. Thromb Haemost 2006; 95:782-7.

Huang SW, Xiang DK, Huang L, Chen BL, An BQ, Li GF, Luo ZY. Influence of GGCX genotype on warfarin dose requirements in Chinese patients. Thromb Res 2011; 127:131-4.

Kimura R, Miyashita K, Kokubo Y et al. Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients. Thromb Res 2007; 120:181-6.

Li Q, Schurgers LJ, Smith AC, Tsokos M, Uitto J, Cowen EW. Co-existent pseudoxanthoma elasticum and vitamin K-dependent coagulation factor deficiency: compound heterozygosity for mutations in the GGCX gene. Am J Pathol 2009; 174:534-40.

Rai AJ, Udar N, Saad R, Fleisher M. A multiplex assay for detecting genetic variations in CYP2C9, VKORC1, and GGCX involved in warfarin metabolism. Clin Chem 2009; 55:823-6.

Rieder MJ, Reiner AP, Rettie AE. Gamma-glutamyl carboxylase (GGCX) tagSNPs have limited utility for predicting warfarin maintenance dose. J Thromb Haemost 2007; 5:2227-34.

Rost S, Fregin A, Koch D, Compes M, Müller CR, Oldenburg J. Compound heterozygous mutations in the gamma-glutamyl carboxylase gene cause combined deficiency of all vitamin K-dependent blood coagulation factors. Br J Haematol 2004; 126:546-9.

Songpatanasilp T, Chailurkit LO, Chantprasertyothin S, Ongphiphadhanakul B, Taechakraichana N. Effect of GGCX gene polymorphism on the responses of serum undercarboxylated osteocalcin and bone turnover markers after treatment with vitamin K2 (menatetrenone) among postmenopausal Thai women. J Bone Miner Metab 2011; 29:606-14.

Vecsler M, Loebstein R, Almog S et al. Combined genetic profiles of components and regulators of the vitamin K-dependent gamma-carboxylation system affect individual sensitivity to warfarin. Thromb Haemost 2006; 95:205-11.

Wadelius M, Chen LY, Downes K et al. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J 2005; 5:262-70.

GGH (gamma-glutamyl hydrolase (conjugase, folylpolygammaglutamyl hydrolase))

Akhtar TA, Orsomando G, Mehrshahi P et al. A central role for gamma-glutamyl hydrolases in plant folate homeostasis. Plant J 2010; 64:256-66.

Chave KJ, Ryan TJ, Chmura SE, Galivan J. Identification of single nucleotide polymorphisms in the human gamma-glutamyl hydrolase gene and characterization of promoter polymorphisms. Gene 2003; 319:167-75.

Cheng Q, Cheng C, Crews KR et al. Epigenetic regulation of human gamma-glutamyl hydrolase activity in acute lymphoblastic leukemia cells. Am J Hum Genet 2006; 79:264-74.

Cheng Q, Wu B, Kager L et al. A substrate specific functional polymorphism of human gamma-glutamyl hydrolase alters catalytic activity and methotrexate polyglutamate accumulation in acute lymphoblastic leukaemia cells. Pharmacogenetics 2004; 14:557-67.

Chung HH, Kim MK, Kim JW et al. XRCC1 R399Q polymorphism is associated with response to platinum-based neoadjuvant chemotherapy in bulky cervical cancer. Gynecol Oncol 2006; 103:1031-7.

Dervieux T, Kremer J, Lein DO et al. Contribution of common polymorphisms in reduced folate carrier and gamma-glutamylhydrolase to methotrexate polyglutamate levels in patients with rheumatoid arthritis. Pharmacogenetics 2004; 14:733-9.

DeVos L, Chanson A, Liu Z et al. Associations between single nucleotide polymorphisms in folate uptake and metabolizing genes with blood folate, homocysteine, and DNA uracil concentrations. Am J Clin Nutr 2008; 88:1149-58.

Hayashi H, Fujimaki C, Inoue K, Suzuki T, Itoh K. Genetic polymorphism of C452T (T127I) in human gamma-glutamyl hydrolase in a Japanese population. Biol Pharm Bull 2007; 30:839-41.

Herrlinger KR, Cummings JR, Barnardo MC, Schwab M, Ahmad T, Jewell DP. The pharmacogenetics of methotrexate in inflammatory bowel disease. Pharmacogenet Genomics 2005; 15:705-11.

Kim K, Kang SB, Chung HH, Kim JW, Park NH, Song YS. XRCC1 Arginine194Tryptophan and GGH-401Cytosine/Thymine polymorphisms are associated with response to platinum-based neoadjuvant chemotherapy in cervical cancer. Gynecol Oncol 2008; 111:509-15.

Odin E, Wettergren Y, Nilsson S et al. Altered gene expression of folate enzymes in adjacent mucosa is associated with outcome of colorectal cancer patients. Clin Cancer Res 2003; 9:6012-9.

Prey S, Paul C. Effect of folic or folinic acid supplementation on methotrexate-associated safety and efficacy in inflammatory disease: a systematic review. Br J Dermatol 2009; 160:622-8.

Schneider E, Ryan TJ. Gamma-glutamyl hydrolase and drug resistance. Clin Chim Acta 2006; 374:25-32.

van der Straaten RJ, Wessels JA, de Vries-Bouwstra JK et al. Exploratory analysis of four polymorphisms in human GGH and FPGS genes and their effect in methotrexate-treated rheumatoid arthritis patients. Pharmacogenomics 2007; 8:141-50.

Warren RB, Smith RL, Campalani E et al. Outcomes of methotrexate therapy for psoriasis and relationship to genetic polymorphisms. Br J Dermatol 2009; 160:438-41.

GH1 (growth hormone 1)

Akintoye SO, Kelly MH, Brillante B et al. Pegvisomant for the treatment of gsp-mediated growth hormone excess in patients with McCune-Albright syndrome. J Clin Endocrinol Metab 2006; 91:2960-6.

Besson A, Salemi S, Deladoëy J et al. Short stature caused by a biologically inactive mutant growth hormone (GH-C53S). J Clin Endocrinol Metab 2005; 90:2493-9.

Kowarski AA, Schneider J, Ben-Galim E, Weldon VV, Daughaday WH. Growth failure with normal serum RIA-GH and low somatomedin activity: somatomedin restoration and growth acceleration after exogenous GH. J Clin Endocrinol Metab 1978; 47:461-4.

McGuinness L, Magoulas C, Sesay AK et al. Autosomal dominant growth hormone deficiency disrupts secretory vesicles in vitro and in vivo in transgenic mice. Endocrinology 2003; 144:720-31.

Mori T, Devlin RH. Transgene and host growth hormone gene expression in pituitary and nonpituitary tissues of normal and growth hormone transgenic salmon. Mol Cell Endocrinol 1999; 149:129-39.

Phillips JA 3rd, Cogan JD. Genetic basis of endocrine disease. 6. Molecular basis of familial human growth hormone deficiency. J Clin Endocrinol Metab 1994; 78:11-6.

Skrzyszowska M, Smorag Z, Słomski R et al. Generation of transgenic rabbits by the novel technique of chimeric somatic cell cloning. Biol Reprod 2006; 74:1114-20.

Takahashi Y, Shirono H, Arisaka O et al. Biologically inactive growth hormone caused by an amino acid substitution. J Clin Invest 1997; 100:1159-65.

Virgo BB. Effects of somatostatin and testosterone on the hepatic monooxygenase system in castrated male rats. Drug Metab Dispos 1985; 13:9-13.

GHR (growth hormone receptor)

Arman A, Yüksel B, Coker A, Sarioz O, Temiz F, Topaloglu AK. Novel growth hormone receptor gene mutation in a patient with Laron syndrome. J Pediatr Endocrinol Metab 2010; 23:407-14.

Audí L, Carrascosa A, Esteban C et al. The exon 3-deleted/full-length growth hormone receptor polymorphism does not influence the effect of puberty or growth hormone therapy on glucose homeostasis in short non-growth hormone-deficient small-for-gestational-age children: results from a two-year controlled prospective study. J Clin Endocrinol Metab 2008; 93:2709-15.

Barbosa EJ, Palming J, Glad CA et al. Influence of the exon 3-deleted/full-length growth hormone (GH) receptor polymorphism on the response to GH replacement therapy in adults with severe GH deficiency. J Clin Endocrinol Metab 2009; 94:639-44.

Bianchi A, Giustina A, Cimino V et al. Influence of growth hormone receptor d3 and full-length isoforms on biochemical treatment outcomes in acromegaly. J Clin Endocrinol Metab 2009; 94:2015-22.

Buzi F, Mella P, Pilotta A et al. Growth hormone receptor polymorphisms. Endocr Dev 2007; 11:28-35.

Carrascosa A, Audí L, Esteban C et al. Growth hormone (GH) dose, but not exon 3-deleted/full-length GH receptor polymorphism genotypes, influences growth response to two-year GH Therapy in Short Small-for-Gestational-Age Children. J Clin Endocrinol Metab 2008; 93:147-53.

Dos Santos C, Essioux L, Teinturier C et al. A common polymorphism of the growth hormone receptor is associated with increased responsiveness to growth hormone. Nat Genet 2004; 36:720-4.

Egecioglu E, Bjursell M, Ljungberg A et al. Growth hormone receptor deficiency results in blunted ghrelin feeding response, obesity, and hypolipidemia in mice. Am J Physiol Endocrinol Metab 2006; 290:317-25.

Ihara K, Inuo M, Kuromaru R et al. The Leu544Ile polymorphism of the growth hormone receptor gene affects the serum cholesterol levels during GH treatment in children with GH deficiency. Clin Endocrinol 2007; 67:212-7.

Jensen RB, Vielwerth S, Larsen T, Greisen G, Leffers H, Juul A. The presence of the d3-growth hormone receptor polymorphism is negatively associated with fetal growth but positively associated with postnatal growth in healthy subjects. J Clin Endocrinol Metab 2007; 92:2758-63.

Jorge AA, Arnhold IJ. Growth hormone receptor exon 3 isoforms and their implication in growth disorders and treatment. Horm Res 2009; 71 Suppl 2:55-63.

Jorge AA, Marchisotti FG, Montenegro LR et al. Growth hormone (GH) pharmacogenetics: influence of GH receptor exon 3 retention or deletion on first-year growth response and final height in patients with severe GH deficiency. J Clin Endocrinol Metab 2006; 91:1076-80.

Mercado M, González B, Sandoval C et al. Clinical and biochemical impact of the d3 growth hormone receptor genotype in acromegaly. J Clin Endocrinol Metab 2008; 93:3411-5.

Meyer S, Ipek M, Keth A et al. Short stature and decreased insulin-like growth factor I (IGF-I)/growth hormone (GH)-ratio in an adult GH-deficient patient pointing to additional partial GH insensitivity due to a R179C mutation of the growth hormone receptor. Growth Horm IGF Res 2007; 17:307-14.

Miquet JG, González L, Matos MN et al. Transgenic mice overexpressing GH exhibit hepatic upregulation of GH-signaling mediators involved in cell proliferation. J Endocrinol 2008; 198:317-30.

Montefusco L, Filopanti M, Ronchi CL et al. d3-Growth hormone receptor polymorphism in acromegaly: effects on metabolic phenotype. Clin Endocrinol 2010; 72:661-7.

Rosenfeld RG. Pharmacogenomics and pharmacoproteomics in the evaluation and management of short stature. Eur J Endocrinol 2007; 157 Suppl 1:27-31.

Slot KA, Kastelijn J, Bachelot A, Kelly PA, Binart N, Teerds KJ. Reduced recruitment and survival of primordial and growing follicles in GH receptor-deficient mice. Reproduction 2006; 131:525-32.

Strawbridge RJ, Kärvestedt L, Li C et al. GHR exon 3 polymorphism: association with type 2 diabetes mellitus and metabolic disorder. Growth Horm IGF Res 2007; 17:392-8.

van der Klaauw AA, van der Straaten T, Baak-Pablo R et al. Influence of the d3-growth hormone (GH) receptor isoform on short-term and long-term treatment response to GH replacement in GH-deficient adults. J Clin Endocrinol Metab 2008; 93:2828-34.

van der Straaten RJ, Wessels JA, de Vries-Bouwstra JK et al. Exploratory analysis of four polymorphisms in human GGH and FPGS genes and their effect in methotrexate-treated rheumatoid arthritis patients. Pharmacogenomics 2007; 8:141-50.

Wang Z, Luque RM, Kineman RD et al. Disruption of growth hormone signaling retards prostate carcinogenesis in the Probasin/TAg rat. Endocrinology 2008; 149:1366-76.

Wu Y, Arai AC, Rumbaugh G et al. Mutations in ionotropic AMPA receptor 3 alter channel properties and are associated with moderate cognitive impairment in humans. Proc Natl Acad Sci USA 2007; 104:18163-8.

Zhou J, Lu Y, Gao XH et al. The growth hormone receptor gene is associated with mandibular height in a Chinese population. J Dent Res 2005; 84:1052-6.

GNAS (GNAS complex locus)

Alakus H, Mönig SP, Warnecke-Eberz U et al. Association of the GNAS1 T393C polymorphism with tumor stage and survival in gastric cancer. World J Gastroenterol 2009; 15:6061-7.

Alakus H, Warnecke-Eberz U, Bollschweiler E et al. GNAS1 T393C polymorphism is associated with histopathological response to neoadjuvant radiochemotherapy in esophageal cancer. Pharmacogenomics J 2009; 9:202-7.

Bastepe M, Jüppner H. GNAS locus and pseudohypoparathyroidism. Horm Res 2005; 63:65-74.

Bastepe M. The GNAS locus and pseudohypoparathyroidism. Adv Exp Med Biol 2008; 626:27-40.

Billestrup N, Swanson LW, Vale W. Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro. Proc Natl Acad Sci USA 1986; 83:6854-7.

Christopoulos S, Bourdeau I, Lacroix A. Clinical and subclinical ACTH-independent macronodular adrenal hyperplasia and aberrant hormone receptors. Horm Res 2005; 64:119-31.

Freson K, Jaeken J, van Helvoirt M et al. Functional polymorphisms in the paternally expressed XLalphas and its cofactor ALEX decrease their mutual interaction and enhance receptor-mediated cAMP formation. Hum Mol Genet 2003; 12:1121-30.

Frey UH, Alakus H, Wohlschlaeger J, et al. GNAS1 T393C polymorphism and survival in patients with sporadic colorectal cancer. Clin Cancer Res 2005; 11:5071-7.

Frey UH, Hauner H, Jöckel KH, Manthey I, Brockmeyer N, Siffert W. A novel promoter polymorphism in the human gene GNAS affects binding of transcription factor upstream stimulatory factor 1, Galphas protein expression and body weight regulation. Pharmacogenet Genomics 2008; 18:141-51.

Frey UH, Lümmen G, Jäger T et al. The GNAS1 T393C polymorphism predicts survival in patients with clear cell renal cell carcinoma. Clin Cancer Res 2006; 12:759-63.

Glowacka D, Loesch C, Johnson KT et al. The T393C polymorphism of the Galphas gene (GNAS1) is associated with the course of Graves’ disease. Horm Metab Res 2009; 41:430-5.

Goto M, Mabe H, Nishimura G, Katsumata N. Progressive osseous heteroplasia caused by a novel nonsense mutation in the GNAS1 gene. J Pediatr Endocrinol Metab 2010; 23:303-9.

Hayward BE, Barlier A, Korbonits M et al. Imprinting of the G(s)alpha gene GNAS1 in the pathogenesis of acromegaly. J Clin Invest 2001; 107:31-6.

Jia H, Hingorani AD, Sharma P et al. Association of the G(s)alpha gene with essential hypertension and response to beta-blockade. Hypertension 1999; 34:8-14.

Kim SJ, Gonen D, Hanna GL, Leventhal BL, Cook EH Jr. Deletion polymorphism in the coding region of the human NESP55 alternative transcript of GNAS1. Mol Cell Probes 2000; 14:191-4.

Krechowec S, Plagge A. Physiological dysfunctions associated with mutations of the imprinted Gnas locus. Physiology 2008; 23:221-9.

Mao YM, Liu ZQ, Chen BL et al. Effect of 393T>C polymorphism of GNAS1 gene on dobutamine response in Chinese healthy subjects. J Clin Pharmacol 2009; 49:929-36.

Nieminen T, Uusitalo H, Mäenpää J et al. Polymorphisms of genes CYP2D6, ADRB1 and GNAS1 in pharmacokinetics and systemic effects of ophthalmic timolol. A pilot study. Eur J Clin Pharmacol 2005; 61:811-9.

Schmitz KJ, Lang H, Frey UH et al. GNAS1 T393C polymorphism is associated with clinical course in patients with intrahepatic cholangiocarcinoma. Neoplasia 2007; 9:159-65.

Schwartz GL, Turner ST. Pharmacogenetics of antihypertensive drug responses. Am J Pharmacogenomics 2004; 4:151-60.

GNB3 (guanine nucleotide binding protein (G protein), beta polypeptide 3)

Exton MS, Artz M, Siffert W, Schedlowski M. G protein beta3 subunit 825T allele is associated with depression in young, healthy subjects. Neuroreport 2003; 14:531-3.

Fingas CD, Katsounas A, Kahraman A et al. Prognostic assessment of three single-nucleotide polymorphisms (GNB3 825C>T, BCL2-938C>A, MCL1-386C>G) in extrahepatic cholangiocarcinoma. Cancer Invest 2010; 28:472-8.

Grossmann M, Dobrev D, Siffert W, Kirch W. Heterogeneity in hand veins responses to acetylcholine is not associated with polymorphisms in the G-protein beta3-subunit (C825T) and endothelial nitric oxide synthase (G894T) genes but with serum low density lipoprotein cholesterol. Pharmacogenetics 2001; 11:307-16.

Hauner H, Meier M, Jöckel KH, Frey UH, Siffert W. Prediction of successful weight reduction under sibutramine therapy through genotyping of the G-protein beta3 subunit gene (GNB3) C825T polymorphism. Pharmacogenetics 2003; 13:453-9.

Hsiao DJ, Wu LS, Huang SY, Lin E. Weight loss and body fat reduction under sibutramine therapy in obesity with the C825T polymorphism in the GNB3 gene. Pharmacogenet Genomics 2009; 19:730-3.

Kiani JG, Saeed M, Parvez SH, Frossard PM. Association of G-protein beta-3 subunit gene (GNB3) T825 allele with Type II diabetes. Neuro Endocrinol Lett 2005; 26:87-8.

Kohlrausch FB, Salatino-Oliveira A, Gama CS, Lobato MI, Belmonte-de-Abreu P, Hutz MH. G-protein gene 825C>T polymorphism is associated with response to clozapine in Brazilian schizophrenics. Pharmacogenomics 2008; 9:1429-36.

Kopf D, Cheng LS, Blandau P et al. Association of insulin sensitivity and glucose tolerance with the c. 825C>T variant of the G protein beta-3 subunit gene. J Diabetes Complications 2008; 22:205-9.

Lee HJ, Cha JH, Ham BJ et al. Association between a G-protein beta 3 subunit gene polymorphism and the symptomatology and treatment responses of major depressive disorders. Pharmacogenomics J 2004; 4:29-33.

Lee HJ, Lee SY, Choi JE et al. G protein beta3 subunit, interleukin-10, and tumor necrosis factor-alpha gene polymorphisms in Koreans with irritable bowel syndrome. Neurogastroenterol Motil 2010; 22:758-63.

Lee YC, Lin HH, Wang CJ et al. The associations among GNB3 C825T polymorphism, erectile dysfunction, and related risk factors. J Sex Med 2008; 5:2061-8.

Lin E, Chen PS, Chang HH et al. Interaction of serotonin-related genes affects short-term antidepressant response in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1167-72.

Michalsen A, Frey UH, Merse S, Siffert W, Dobos GJ. Hunger and mood during extended fasting are dependent on the GNB3 C825T polymorphism. Ann Nutr Metab 2009; 54:184-8.

Mitchell A, Rushentsova U, Siffert W, Philipp T, Wenzel RR. The angiotensin II receptor antagonist valsartan inhibits endothelin 1-induced vasoconstriction in the skin microcirculation in humans in vivo: influence of the G-protein beta3 subunit (GNB3) C825T polymorphism. Clin Pharmacol Ther 2006; 79:274-81.

Nürnberger J, Dammer S, Mitchell A et al. Effect of the C825T polymorphism of the G protein beta 3 subunit on the systolic blood pressure-lowering effect of clonidine in young, healthy male subjects. Clin Pharmacol Ther 2003; 74:53-60.

Peters BJ, Maitland-van der Zee AH, Stricker BH et al. Effectiveness of statins in the reduction of the risk of myocardial infarction is modified by the GNB3 C825T variant. Pharmacogenet Genomics 2008; 18:631-6.

Rosskopf D, Kielbik M, Manthey I, Bilmen G, Eisenhardt A, Siffert W. Characterization of the splice variant Gbeta3v of the human G-protein Gbeta3 subunit. Biochim Biophys Acta 2003; 1626:33-42.

Schelleman H, Klungel OH, Witteman JC et al. Diuretic-gene interaction and the risk of myocardial infarction and stroke. Pharmacogenomics J 2007; 7:346-52.

Schelleman H, Stricker BH, Verschuren WM et al. Interactions between five candidate genes and antihypertensive drug therapy on blood pressure. Pharmacogenomics J 2006; 6:22-6.

Schreieck J, Dostal S, von Beckerath N et al. C825T polymorphism of the G-protein beta3 subunit gene and atrial fibrillation: association of the TT genotype with a reduced risk for atrial fibrillation. Am Heart J 2004; 148:545-50.

Siffert W, Rosskopf D, Siffert G et al. Association of a human G-protein beta3 subunit variant with hypertension. Nat Genet 1998; 18:45-8.

Siffert W. G protein polymorphisms in hypertension, atherosclerosis, and diabetes. Annu Rev Med 2005; 56:17-28.

Turner ST, Schwartz GL, Chapman AB, Boerwinkle E. C825T polymorphism of the G protein beta(3)-subunit and antihypertensive response to a thiazide diuretic. Hypertension 2001; 37:739-43.

Yamamoto M, Abe M, Jin JJ et al. Association of GNB3 gene with pulse pressure and clustering of risk factors for cardiovascular disease in Japanese. Biochem Biophys Res Commun 2004; 316:744-8.

Zill P, Baghai TC, Zwanzger P et al. Evidence for an association between a G-protein beta3-gene variant with depression and response to antidepressant treatment. Neuroreport 2000; 11:1893-7.

GRIA3 (glutamate receptor, ionotrophic, AMPA 3)

Ganor Y, Goldberg-Stern H, Amrom D et al. Autoimmune epilepsy: some epilepsy patients harbor autoantibodies to glutamate receptors and dsDNA on both sides of the blood-brain barrier, which may kill neurons and decrease in brain fluids after hemispherotomy. Clin Dev Immunol 2004; 11:241-52.

Laje G, Paddock S, Manji H et al. Genetic markers of suicidal ideation emerging during citalopram treatment of major depression. Am J Psychiatry 2007; 164:1530-8.

Lin E, Chen PS. Pharmacogenomics with antidepressants in the STAR*D study. Pharmacogenomics 2008; 9:935-46.

Magri C, Gardella R, Valsecchi P et al. Study on GRIA2, GRIA3 and GRIA4 genes highlights a positive association between schizophrenia and GRIA3 in female patients. Am J Med Genet B Neuropsychiatr Genet 2008; 147:745-53.

Sommer B, Keinänen K, Verdoorn TA et al. Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 1990; 249:1580-5.

Watson R, Jiang Y, Bermudez I et al. Absence of antibodies to glutamate receptor type 3 (GluR3) in Rasmussen encephalitis. Neurology 2004; 63:43-50.

Wu Y, Arai AC, Rumbaugh G et al. Mutations in ionotropic AMPA receptor 3 alter channel properties and are associated with moderate cognitive impairment in humans. Proc Natl Acad Sci USA 2007; 104:18163-8.

GRIK2 (glutamate receptor, ionotropic, kainate 2)

Bah J, Quach H, Ebstein RP et al. Maternal transmission disequilibrium of the glutamate receptor GRIK2 in schizophrenia. Neuroreport 2004; 15:1987-91.

Contractor A, Swanson G, Heinemann SF. Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron 2001; 29:209-16.

Dutta S, Das S, Guhathakurta S et al. Glutamate receptor 6 gene (GluR6 or GRIK2) polymorphisms in the Indian population: a genetic association study on autism spectrum disorder. Cell Mol Neurobiol 2007; 27:1035-47.

Kim SA, Kim JH, Park M, Cho IH, Yoo HJ. Family-based association study between GRIK2 polymorphisms and autism spectrum disorders in the Korean trios. Neurosci Res 2007; 58:332-5.

Laje G, Paddock S, Manji H et al. Genetic markers of suicidal ideation emerging during citalopram treatment of major depression. Am J Psychiatry 2007; 164:1530-8.

Lekman M, Paddock S, McMahon FJ. Pharmacogenetics of major depression: insights from level 1 of the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial. Mol Diagn Ther 2008; 12:321-30.

Li B, Zhang S, Li M, Zhang H, Hertz L, Peng L. Down-regulation of GluK2 kainate receptor expression by chronic treatment with mood-stabilizing anti-convulsants or lithium in cultured astrocytes and brain, but not in neurons. Neuropharmacology 2009; 57:375-85.

MacDonald ME, Vonsattel JP, Shrinidhi J et al. Evidence for the GluR6 gene associated with younger onset age of Huntington’s disease. Neurology 1999; 53:1330-2.

Motazacker MM, Rost BR, Hucho T et al. A defect in the ionotropic glutamate receptor 6 gene (GRIK2) is associated with autosomal recessive mental retardation. Am J Hum Genet 2007; 81:792-8.

Rubinsztein DC, Leggo J, Chiano M et al. Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease. Proc Natl Acad Sci USA 1997; 94:3872-6.

Sampaio AS, Fagerness J, Crane J et al. Association between polymorphisms in GRIK2 gene and obsessive-compulsive disorder: A family-based study. CNS Neurosci Ther 2011; 17:141-7.

Shibata H, Shibata A, Ninomiya H, Tashiro N, Fukumaki Y. Association study of polymorphisms in the GluR6 kainate receptor gene (GRIK2) with schizophrenia. Psychiatry Res 2002; 113:59-67.

Zeng W, Gillis T, Hakky M et al. Genetic analysis of the GRIK2 modifier effect in Huntington’s disease. BMC Neurosci 2006; 7:62.

GRIK4 (glutamate receptor, ionotropic, kainate 4)

Badaracco MA. Keeping our depressed patients in the right treatment long enough for them to get better: some hopeful findings. Am J Psychiatry 2007; 164:1136-9.

Fernandes HB, Catches JS, Petralia RS et al. High-affinity kainate receptor subunits are necessary for ionotropic but not metabotropic signaling. Neuron 2009; 63:818-29.

Horstmann S, Lucae S, Menke A et al. Polymorphisms in GRIK4, HTR2A, and FKBP5 show interactive effects in predicting remission to antidepressant treatment. Neuropsychopharmacology 2010; 35:727-40.

Lekman M, Paddock S, McMahon FJ. Pharmacogenetics of major depression: insights from level 1 of the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial. Mol Diagn Ther 2008; 12:321-30.

Li Z, He Z, Tang W et al. No genetic association between polymorphisms in the kainate-type glutamate receptor gene, GRIK4, and schizophrenia in the Chinese population. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:876-80.

Paddock S, Laje G, Charney D et al. Association of GRIK4 with outcome of antidepressant treatment in the STAR*D cohort. Am J Psychiatry 2007; 164:1181-8.

Pickard BS, Knight HM, Hamilton RS et al. A common variant in the 3’UTR of the GRIK4 glutamate receptor gene affects transcript abundance and protects against bipolar disorder. Proc Natl Acad Sci USA 2008; 105:14940-5.

Pickard BS, Malloy MP, Christoforou A et al. Cytogenetic and genetic evidence supports a role for the kainate-type glutamate receptor gene, GRIK4, in schizophrenia and bipolar disorder. Mol Psychiatry 2006; 11:847-57.

GRINA (glutamate receptor, ionotropic, N-methyl D-aspartate-associated protein 1 (glutamate binding))

Lipton SA. The molecular basis of memantine action in Alzheimer’s disease and other neurologic disorders: low-affinity, uncompetitive antagonism. Curr Alzheimer Res 2005; 2:155-65.

Zhang W, Duan S, Kistner EO et al. Evaluation of genetic variation contributing to differences in gene expression between populations. Am J Hum Genet 2008; 82:631-40.

GRK5 (protein-coupled receptor kinase 5)

Brinks H, Koch WJ. Targeting G protein-coupled receptor kinases (GRKs) in Heart Failure. Drug Discov Today Dis Mech 2010; 7:129-34.

Dorn GW 2nd. GRK mythology: G-protein receptor kinases in cardiovascular disease. J Mol Med 2009; 87:455-63.

Eijgelsheim M, Visser LE, Uitterlinden AG, Stricker BH. Protective effect of a GRK5 polymorphism on heart failure and its interaction with beta-adrenergic receptor antagonists. Pharmacogenomics 2008; 9:1551-5.

Kurnik D, Cunningham AJ, Sofowora GG et al. GRK5 Gln41Leu polymorphism is not associated with sensitivity to beta(1)-adrenergic blockade in humans. Pharmacogenomics 2009; 10:1581-7.

Li L, Liu J, Suo WZ. GRK5 deficiency exaggerates inflammatory changes in TgAPPsw mice. J Neuroinflammation 2008; 5:24.

Liggett SB, Cresci S, Kelly RJ et al. A GRK5 polymorphism that inhibits beta-adrenergic receptor signaling is protective in heart failure. Nat Med 2008; 14:510-7.

Liu J, Rasul I, Sun Y et al. GRK5 deficiency leads to reduced hippocampal acetylcholine level via impaired presynaptic M2/M4 autoreceptor desensitisation. J Biol Chem 2009; 284:19564-71.

Liu P, Wang X, Gao N et al. G protein-coupled receptor kinase 5, overexpressed in the alpha-synuclein up-regulation model of Parkinson’s disease, regulates bcl-2 expression. Brain Res 2010; 1307:134-41.

Lohse MJ, Engelhardt S, Danner S, Böhm M. Mechanisms of beta-adrenergic receptor desensitization: from molecular biology to heart failure. Basic Res Cardiol 1996; 91:29-34.

Suo Z, Cox AA, Bartelli N et al. GRK5 deficiency leads to early Alzheimer-like pathology and working memory impairment. Neurobiol Aging 2007; 28:1873-88.

Tarantino P, de Marco EV, Annesi G et al. Lack of association between G-protein coupled receptor kinase 5 gene and Parkinson’s disease. Am J Med Genet B Neuropsychiatr Genet 2011; 156:104-7.

GRM3 (glutamate receptor, metabotropic 3)

Albalushi T, Horiuchi Y, Ishiguro H et al. Replication study and meta-analysis of the genetic association of GRM3 gene polymorphisms with schizophrenia in a large Japanese case-control population. Am J Med Genet B Neuropsychiatr Genet 2008; 147:392-6.

Bishop JR, Ellingrod VL, Moline J, Miller D. Association between the polymorphic GRM3 gene and negative symptom improvement during olanzapine treatment. Schizophr Res 2005; 77:253-60.

Bishop JR, Miller DD, Ellingrod VL, Holman T. Association between type-three metabotropic glutamate receptor gene (GRM3) variants and symptom presentation in treatment refractory schizophrenia. Hum Psychopharmacol 2011. doi:10. 1002/hup. 1163.

Blasi G, Bertolino A. Imaging genomics and response to treatment with antipsychotics in schizophrenia. NeuroRx 2006; 3:117-30.

Egan MF, Straub RE, Goldberg TE et al. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci USA 2004; 101:12604-9.

Fujii Y, Shibata H, Kikuta R et al. Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene (GRM3) with schizophrenia. Psychiatr Genet 2003; 13:71-6.

Harrison PJ, Lyon L, Sartorius LJ, Burnet PW, Lane TA. The group II metabotropic glutamate receptor 3 (mGluR3, mGlu3, GRM3): expression, function and involvement in schizophrenia. J Psychopharmacol 2008; 22:308-22.

Kato T. Molecular genetics of bipolar disorder and depression. Psychiatry Clin Neurosci 2007; 61:3-19.

Krivoy A, Fischel T, Weizman A. The possible involvement of metabotropic glutamate receptors in schizophrenia. Eur Neuropsychopharmacol 2008; 18:395-405.

Mössner R, Schuhmacher A, Schulze-Rauschenbach S et al. Further evidence for a functional role of the glutamate receptor gene GRM3 in schizophrenia. Eur Neuropsychopharmacol 2008; 18:768-72.

Norton N, Williams HJ, Dwyer S et al. No evidence for association between polymorphisms in GRM3 and schizophrenia. BMC Psychiatry 2005; 5:23.

Sartorius LJ, Nagappan G, Lipska BK et al. Alternative splicing of human metabotropic glutamate receptor 3. J Neurochem 2006; 96:1139-48.

Sartorius LJ, Weinberger DR, Hyde TM, Harrison PJ, Kleinman JE, Lipska BK. Expression of a GRM3 splice variant is increased in the dorsolateral prefrontal cortex of individuals carrying a schizophrenia risk SNP. Neuropsychopharmacology 2008; 33:2626-34.

Tan HY, Callicott JH, Weinberger DR. Dysfunctional and compensatory prefrontal cortical systems, genes and the pathogenesis of schizophrenia. Cereb Cortex 2007; 17 Suppl 1:171-81.

Tsunoka T, Kishi T, Ikeda M et al. Association analysis of Group II metabotropic glutamate receptor genes (GRM2 and GRM3) with mood disorders and fluvoxamine response in a Japanese population. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:875-9.

Uslaner JM, Smith SM, Huszar SL et al. Combined administration of an mGlu2/3 receptor agonist and a 5-HT 2A receptor antagonist markedly attenuate the psychomotor-activating and neurochemical effects of psychostimulants. Psychopharmacology 2009; 206:641-51.

Woolley ML, Pemberton DJ, Bate S, Corti C, Jones DN. The mGlu2 but not the mGlu3 receptor mediates the actions of the mGluR2/3 agonist, LY379268, in mouse models predictive of antipsychotic activity. Psychopharmacology 2008; 196:431-40.

GSK3B (glycogen synthase kinase 3 beta)

Adli M, Hollinde DL, Stamm T et al. Response to lithium augmentation in depression is associated with the glycogen synthase kinase 3-beta -50T/C single nucleotide polymorphism. Biol Psychiatry 2007; 62:1295-302.

Benedetti F, Bernasconi A, Lorenzi C et al. A single nucleotide polymorphism in glycogen synthase kinase 3-beta promoter gene influences onset of illness in patients affected by bipolar disorder. Neurosci Lett 2004; 355:37-40.

Benedetti F, Serretti A, Pontiggia A et al. Long-term response to lithium salts in bipolar illness is influenced by the glycogen synthase kinase 3-beta -50 T/C SNP. Neurosci Lett 2005; 376:51-5.

Cacabelos R. Pharmacogenomics for the treatment of dementia. Ann Med 2002; 34:357-79.

Diniz BS, Talib LL, Joaquim HP, de Paula VR, Gattaz WF, Forlenza OV. Platelet GSK3B activity in patients with late-life depression: Marker of depressive episode severity and cognitive impairment? World J Biol Psychiatry 2011; 12:216-22.

Gillespie JR, Ulici V, Dupuis H et al. Deletion of glycogen synthase kinase-3β in cartilage results in up-regulation of glycogen synthase kinase-3α protein expression. Endocrinology 2011; 152:1755-66.

Henriksen EJ, Dokken BB. Role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Curr Drug Targets 2006; 7:1435-41.

Kaladchibachi SA, Doble B, Anthopoulos N, Woodgett JR, Manoukian AS. Glycogen synthase kinase 3, circadian rhythms, and bipolar disorder: a molecular link in the therapeutic action of lithium. J Circadian Rhythms 2007; 5:3.

Kerkela R, Kockeritz L, Macaulay K et al. Deletion of GSK-3beta in mice leads to hypertrophic cardiomyopathy secondary to cardiomyoblast hyperproliferation. J Clin Invest 2008; 118:3609-18.

Mateo I, Vázquez-Higuera JL, Sánchez-Juan P et al. Epistasis between tau phosphorylation regulating genes (CDK5R1 and GSK-3beta) and Alzheimer’s disease risk. Acta Neurol Scand 2009; 120:130-3.

Mendes CT, Mury FB, de Sá Moreira E et al. Lithium reduces Gsk3b mRNA levels: implications for Alzheimer Disease. Eur Arch Psychiatry Clin Neurosci 2009; 259:16-22.

O’Brien WT, Klein PS. Validating GSK3 as an in vivo target of lithium action. Biochem Soc Trans 2009; 37:1133-8.

Ougolkov AV, Billadeau DD. Targeting GSK-3: a promising approach for cancer therapy? Future Oncol 2006; 2:91-100.

Plattner F, Angelo M, Giese KP. The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J Biol Chem 2006; 281:25457-65.

Rayasam GV, Tulasi VK, Sodhi R, Davis JA, Ray A. Glycogen synthase kinase 3: more than a namesake. Br J Pharmacol 2009; 156:885-98.

Scassellati C, Bonvicini C, Perez J et al. Association study of -1727 A/T, -50 C/T and (CAA)n repeat GSK-3beta gene polymorphisms with schizophrenia. Neuropsychobiology 2004; 50:16-20.

Souza RP, Romano-Silva MA, Lieberman JA, Meltzer HY, Wong AH, Kennedy JL. Association study of GSK3 gene polymorphisms with schizophrenia and clozapine response. Psychopharmacology 2008; 200:177-86.

Takashima A. GSK-3 is essential in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 2006; 9:309-17.

Tsai SJ, Liou YJ, Hong CJ, Yu YW, Chen TJ. Glycogen synthase kinase-3beta gene is associated with antidepressant treatment response in Chinese major depressive disorder. Pharmacogenomics J 2008; 8:384-90.

Wang Z, Smith KS, Murphy M et al. Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature 2008; 455:1205-9.

Zhang K, Yang C, Xu Y et al. Genetic association of the interaction between the BDNF and GSK3B genes and major depressive disorder in a Chinese population. J Neural Transm 2010; 117:393-401.

GSS (glutathione synthetase)

Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 2009; 390:191-214.

Beutler E, Gelbart T, Pegelow C. Erythrocyte glutathione synthetase deficiency leads not only to glutathione but also to glutathione-S-transferase deficiency. J Clin Invest 1986; 77:38-41.

Dahl N, Pigg M, Ristoff E et al. Missense mutations in the human glutathione synthetase gene result in severe metabolic acidosis, 5-oxoprolinuria, hemolytic anemia and neurological dysfunction. Hum Mol Genet 1997; 6:1147-52.

Morahan JM, Yu B, Trent RJ, Pamphlett R. Genetic susceptibility to environmental toxicants in ALS. Am J Med Genet B Neuropsychiatr Genet 2007; 144:885-90.

Njålsson R, Norgren S. Physiological and pathological aspects of GSH metabolism. Acta Paediatr 2005; 94:132-7.

Njålsson R, Ristoff E, Carlsson K, Winkler A, Larsson A, Norgren S. Genotype, enzyme activity, glutathione level, and clinical phenotype in patients with glutathione synthetase deficiency. Hum Genet 2005; 116:384-9.

Prins HK, Oort M, Zürcher C, Beckers T. Congenital nonspherocytic hemolytic anemia, associated with glutathione deficiency of the erythrocytes. Hematologic, biochemical and genetic studies. Blood 1966; 27:145-66.

Ristoff E, Larsson A. Inborn errors in the metabolism of glutathione. Orphanet J Rare Dis 2007; 2:16.

Shi ZZ, Habib GM, Rhead WJ et al. Mutations in the glutathione synthetase gene cause 5-oxoprolinuria. Nat Genet 1996; 14:361-5.

Spielberg SP, Garrick MD, Corash LM et al. Biochemical heterogeneity in glutathione synthetase deficiency. J Clin Invest 1978; 61:1417-20.

Sun Z, Chen J, Aakre J et al. Genetic variation in glutathione metabolism and DNA repair genes predicts survival of small-cell lung cancer patients. Ann Oncol 2010; 21:2011-6.

GSTA1 (glutathione S-transferase alpha 1)

Ahn J, Gammon MD, Santella RM et al. Effects of glutathione S-transferase A1 (GSTA1) genotype and potential modifiers on breast cancer risk. Carcinogenesis 2006; 27:1876-82.

Bredschneider M, Klein K, Mürdter TE et al. Genetic polymorphisms of glutathione S-transferase A1, the major glutathione S-transferase in human liver: consequences for enzyme expression and busulfan conjugation. Clin Pharmacol Ther 2002; 71:479-87.

Chroust K, Jowett T, Farid-Wajidi MF et al. Activation or detoxification of mutagenic and carcinogenic compounds in transgenic Drosophila expressing human glutathione S-transferase. IMutat Res 2001; 498:169-79.

Coles BF, Morel F, Rauch C et al. Effect of polymorphism in the human glutathione S-transferase A1 promoter on hepatic GSTA1 and GSTA2 expression. Pharmacogenetics 2001; 11:663-9.

Ekhart C, Doodeman VD, Rodenhuis S, Smits PH, Beijnen JH, Huitema AD. Influence of polymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide. Pharmacogenet Genomics 2008; 18:515-23.

Ekhart C, Rodenhuis S, Smits PH, Beijnen JH, Huitema AD. An overview of the relations between polymorphisms in drug metabolising enzymes and drug transporters and survival after cancer drug treatment. Cancer Treat Rev 2009; 35:18-31.

Goekkurt E, Stoehlmacher J, Stueber C et al. Pharmacogenetic analysis of liver toxicity after busulfan/cyclophosphamide-based allogeneic hematopoietic stem cell transplantation. Anticancer Res 2007; 27:4377-80.

Johnson L, Orchard PJ, Baker KS et al. Glutathione S-transferase A1 genetic variants reduce busulfan clearance in children undergoing hematopoietic cell transplantation. J Clin Pharmacol 2008; 48:1052-62.

Kusama M, Kubota T, Matsukura Y et al. Influence of glutathione S-transferase A1 polymorphism on the pharmacokinetics of busulfan. Clin Chim Acta 2006; 368:93-8.

Morel F, Rauch C, Coles B, Le Ferrec E, Guillouzo A. The human glutathione transferase alpha locus: genomic organization of the gene cluster and functional characterization of the genetic polymorphism in the hGSTA1 promoter. Pharmacogenetics 2002; 12:277-86.

Nguyen TV, Janssen MJ, van Oijen MG et al. Genetic polymorphisms in GSTA1, GSTP1, GSTT1, and GSTM1 and gastric cancer risk in a Vietnamese population. Oncol Res 2010; 18:349-55.

Oniki K, Hori M, Takata K et al. Association between glutathione S-transferase A1, M1 and T1 polymorphisms and hypertension. Pharmacogenet Genomics 2008; 18:275-7.

Piacentini S, Polimanti R, Moscatelli B et al. Glutathione S-transferase gene polymorphisms and air pollution as interactive risk factors for asthma in a multicentre Italian field study: A preliminary study. Ann Hum Biol 2010; 37:427-39.

Seidegård J, Ekström G et al. The role of human glutathione transferases and epoxide hydrolases in the metabolism of xenobiotics. Environ Health Perspect 1997; 105 Suppl 4:791-9.

Sweeney C, Ambrosone CB, Joseph L et al. Association between a glutathione S-transferase A1 promoter polymorphism and survival after breast cancer treatment. Int J Cancer 2003; 103:810-4.

Yang P, Ebbert JO, Sun Z, Weinshilboum RM. Role of the glutathione metabolic pathway in lung cancer treatment and prognosis: a review. J Clin Oncol 2006; 24:1761-9.

GSTK1 (glutathione S-transferase kappa 1)

Gao F, Fang Q, Zhang R et al. Polymorphism of DsbA-L gene associates with insulin secretion and body fat distribution in Chinese population. Endocr J 2009; 56:487-94.

Ladner JE, Parsons JF, Rife CL, Gilliland GL, Armstrong RN. Parallel evolutionary pathways for glutathione transferases: structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1. Biochemistry 2004; 43:352-61.

Li J, Xia Z, Ding J. Thioredoxin-like domain of human kappa class glutathione transferase reveals sequence homology and structure similarity to the theta class enzyme. Protein Sci 2005; 14:2361-9.

Liu M, Zhou L, Xu A et al. A disulfide-bond A oxidoreductase-like protein (DsbA-L) regulates adiponectin multimerization. Proc Natl Acad Sci USA 2008; 105:18302-7.

Mavis CK, Morey Kinney SR, Foster BA, Karpf AR. Expression level and DNA methylation status of glutathione-S-transferase genes in normal murine prostate and TRAMP tumors. Prostate 2009; 69:1312-24.

Morel F, Rauch C, Petit E et al. Gene and protein characterization of the human glutathione S-transferase kappa and evidence for a peroxisomal localization. J Biol Chem 2004; 279:16246-53.

Pemble SE, Wardle AF, Taylor JB. Glutathione S-transferase class Kappa: characterization by the cloning of rat mitochondrial GST and identification of a human homologue. Biochem J 1996; 319:749-54.

Shield AJ, Murray TP, Cappello JY, Coggan M, Board PG. Polymorphisms in the human glutathione transferase Kappa (GSTK1) promoter alter gene expression. Genomics 2010; 95:299-305.

GSTM1 (glutathione S-transferase mu 1)

Ansari M, Lauzon-Joset JF, Vachon MF et al. Influence of GST gene polymorphisms on busulfan pharmacokinetics in children. Bone Marrow Transplant 2010; 45:261-7.

Ateş NA, Tamer L, Ateş C et al. Glutathione S-transferase M1, T1, P1 genotypes and risk for development of colorectal cancer. Biochem Genet 2005; 43:149-63.

Buyske S, Williams TA, Mars AE et al. Analysis of case-parent trios at a locus with a deletion allele: association of GSTM1 with autism. BMC Genet 2006; 7:8.

Chen CL, Liu Q, Pui CH et al. Higher frequency of glutathione S-transferase deletions in black children with acute lymphoblastic leukemia. Blood 1997; 89:1701-7.

Chen Y, Li G, Yin S et al. Genetic polymorphisms involved in toxicant-metabolizing enzymes and the risk of chronic benzene poisoning in Chinese occupationally exposed populations. Xenobiotica 2007; 37:103-12.

Datta SK, Kumar V, Ahmed RS, Tripathi AK, Kalra OP, Banerjee BD. Effect of GSTM1 and GSTT1 double deletions in the development of oxidative stress in diabetic nephropathy patients. Indian J Biochem Biophys 2010; 47:100-3.

Gates MA, Tworoger SS, Terry KL et al. Talc use, variants of the GSTM1, GSTT1, and NAT2 genes, and risk of epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 2008; 17:2436-44.

Green VJ, Pirmohamed M, Kitteringham NR, Knapp MJ, Park BK. Glutathione S-transferase mu genotype (GSTM1*0) in Alzheimer’s patients with tacrine transaminitis. Br J Clin Pharmacol 1995; 39:411-5.

Johns LE, Houlston RS. Glutathione S-transferase mu1 (GSTM1) status and bladder cancer risk: a meta-analysis. Mutagenesis 2000; 15:399-404.

Khan MI, Micheal S, Akhtar F et al. The association of glutathione S-transferase GSTT1 and GSTM1 gene polymorphism with pseudoexfoliative glaucoma in a Pakistani population. Mol Vis 2010; 16:2146-52.

Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003; 33:177-82.

Luo YP, Chen HC, Khan MA et al. Genetic polymorphisms of metabolic enzymes-CYP1A1, CYP2D6, GSTM1, and GSTT1, and gastric carcinoma susceptibility. Tumour Biol 2011; 32:215-22.

Manfredi S, Calvi D, del Fiandra M, Botto N, Biagini A, Andreassi MG. Glutathione S-transferase T1- and M1-null genotypes and coronary artery disease risk in patients with Type 2 diabetes mellitus. Pharmacogenomics 2009; 10:29-34.

Mo Z, Gao Y, Cao Y, Gao F, Jian L. An updating meta-analysis of the GSTM1, GSTT1, and GSTP1 polymorphisms and prostate cancer: a HuGE review. Prostate 2009; 69:662-88.

Oldenburg J, Kraggerud SM, Brydøy M, Cvancarova M, Lothe RA, Fossa SD. Association between long-term neuro-toxicities in testicular cancer survivors and polymorphisms in glutathione-s-transferase-P1 and -M1, a retrospective cross sectional study. J Transl Med 2007; 5:70.

Pirmohamed M, Alfirevic A, Vilar J et al. Association analysis of drug metabolizing enzyme gene polymorphisms in HIV-positive patients with co-trimoxazole hypersensitivity. Pharmacogenetics 2000; 10:705-13.

R Yang X, Pfeiffer RM, Goldstein AM. Influence of glutathione-S-transferase (GSTM1, GSTP1, GSTT1) and cytochrome p450 (CYP1A1, CYP2D6) polymorphisms on numbers of basal cell carcinomas (BCCs) in families with the naevoid basal cell carcinoma syndrome. J Med Genet 2006; 43:16.

Rodríguez-Santiago B, Brunet A, Sobrino B et al. Association of common copy number variants at the glutathione S-transferase genes and rare novel genomic changes with schizophrenia. Mol Psychiatry 2010; 15:1023-33.

Schneider J, Bernges U, Philipp M, Woitowitz HJ. GSTM1, GSTT1, and GSTP1 polymorphism and lung cancer risk in relation to tobacco smoking. Cancer Lett 2004; 208:65-74.

Silva Mdo C, Gaspar J, Duarte Silva I, Faber A, Rueff J. GSTM1, GSTT1, and GSTP1 genotypes and the genotoxicity of hydroquinone in human lymphocytes. Environ Mol Mutagen 2004; 43:258-64.

Simon T, Becquemont L, Mary-Krause M et al. Combined glutathione-S-transferase M1 and T1 genetic polymorphism and tacrine hepatotoxicity. Clin Pharmacol Ther 2000; 67:432-7.

Sivonová M, Waczulíková I, Dobrota D et al. Polymorphisms of glutathione-S-transferase M1, T1, P1 and the risk of prostate cancer: a case-control study. J Exp Clin Cancer Res 2009; 28:32.

Srivastava A, Poonkuzhali B, Shaji RV et al. Glutathione S-transferase M1 polymorphism: a risk factor for hepatic venoocclusive disease in bone marrow transplantation. Blood 2004; 104:1574-7.

Stocco G, Martelossi S, Barabino A et al. Glutathione-S-transferase genotypes and the adverse effects of azathioprine in young patients with inflammatory bowel disease. Inflamm Bowel Dis 2007; 13:57-64.

Sun CA, Wang LY, Chen CJ et al. Genetic polymorphisms of glutathione S-transferases M1 and T1 associated with susceptibility to aflatoxin-related hepatocarcinogenesis among chronic hepatitis B carriers: a nested case-control study in Taiwan. Carcinogenesis 2001; 22:1289-94.

Thier R, Brüning T, Roos PH et al. Markers of genetic susceptibility in human environmental hygiene and toxicology: the role of selected CYP, NAT and GST genes. Int J Hyg Environ Health 2003; 206:149-71.

Ueda K, Ishitsu T, Seo T et al. Glutathione S-transferase M1 null genotype as a risk factor for carbamazepine-induced mild hepatotoxicity. Pharmacogenomics 2007; 8:435-42.

Unlü A, Ates NA, Tamer L, Ates C. Relation of glutathione S-transferase T1, M1 and P1 genotypes and breast cancer risk. Cell Biochem Funct 2008; 26:643-7.

Vaury C, Lainé R, Noguiez P et al. Human glutathione S-transferase M1 null genotype is associated with a high inducibility of cytochrome P450 1A1 gene transcription. Cancer Res 1995; 55:5520-3.

Wenzlaff AS, Cote ML, Bock CH, Land SJ, Schwartz AG. GSTM1, GSTT1 and GSTP1 polymorphisms, environmental tobacco smoke exposure and risk of lung cancer among never smokers: a population-based study. Carcinogenesis 2005; 26:395-401.

White DL, Li D, Nurgalieva Z, El-Serag HB. Genetic variants of glutathione S-transferase as possible risk factors for hepatocellular carcinoma: a HuGE systematic review and meta-analysis. Am J Epidemiol 2008; 167:377-89.

Yu KD, Di GH, Fan L et al. A functional polymorphism in the promoter region of GSTM1 implies a complex role for GSTM1 in breast cancer. FASEB J 2009; 23:2274-87.

Zhang J, Deng J, Zhang C et al. Association of GSTT1, GSTM1 and CYP1A1 polymorphisms with susceptibility to systemic lupus erythematosus in the Chinese population. Clin Chim Acta 2010; 411:878-81.

GSTO1 (glutathione S-transferase omega 1)

Chung CJ, Pu YS, Su CT, Huang CY, Hsueh YM. Gene polymorphisms of glutathione S-transferase omega 1 and 2, urinary arsenic methylation profile and urothelial carcinoma. Sci Total Environ 2011; 409:465-70.

Kölsch H, Larionov S, Dedeck O et al. Association of the glutathione S-transferase omega-1 Ala140Asp polymorphism with cerebrovascular atherosclerosis and plaque-associated interleukin-1 alpha expression. Stroke 2007; 38:2847-50.

Kölsch H, Linnebank M, Lütjohann D et al. Polymorphisms in glutathione S-transferase omega-1 and AD, vascular dementia, and stroke. Neurology 2004; 63:2255-60.

Li YJ, Oliveira SA, Xu P et al. Glutathione S-transferase omega-1 modifies age-at-onset of Alzheimer disease and Parkinson disease. Hum Mol Genet 2003; 12:3259-67.

Li YJ, Scott WK, Zhang L, et al. Revealing the role of glutathione S-transferase omega in age-at-onset of Alzheimer and Parkinson diseases. Neurobiol Aging 2006; 27:1087-93.

Marahatta SB, Punyarit P, Bhudisawasdi V, Paupairoj A, Wongkham S, Petmitr S. Polymorphism of glutathione S-transferase omega gene and risk of cancer. Cancer Lett 2006; 236:276-81.

Mavis CK, Morey Kinney SR, Foster BA, Karpf AR. Expression level and DNA methylation status of glutathione-S-transferase genes in normal murine prostate and TRAMP tumors. Prostate 2009; 69:1312-24.

Mukherjee B, Salavaggione OE, Pelleymounter LL et al. Glutathione S-transferase omega 1 and omega 2 pharmacogenomics. Drug Metab Dispos 2006; 34:1237-46.

Ozturk A, Desai PP, Minster RL, Dekosky ST, Kamboh MI. Three SNPs in the GSTO1, GSTO2 and PRSS11 genes on chromosome 10 are not associated with age-at-onset of Alzheimer’s disease. Neurobiol Aging 2005; 26:1161-5.

Paiva L, Marcos R, Creus A, Coggan M, Oakley AJ, Board PG. Polymorphism of glutathione transferase Omega 1 in a population exposed to a high environmental arsenic burden. Pharmacogenet Genomics 2008; 18:1-10.

Peddareddygari LR, Dutra AV, Levenstien MA, Sen S, Grewal RP. An analysis of methylenetetrahydrofolate reductase and glutathione S-transferase omega-1 genes as modifiers of the cerebral response to ischemia. BMC Neurol 2009; 9:37.

Piacentini S, Polimanti R, Moscatelli B et al. Glutathione S-transferase gene polymorphisms and air pollution as interactive risk factors for asthma in a multicentre Italian field study: A preliminary study. Ann Hum Biol 2010; 37:427-39.

Whitbread AK, Tetlow N, Eyre HJ, Sutherland GR, Board PG. Characterization of the human Omega class glutathione transferase genes and associated polymorphisms. Pharmacogenetics 2003; 13:131-44.

GSTO2 (glutathione S-transferase omega 2)

Chung CJ, Pu YS, Su CT, Huang CY, Hsueh YM. Gene polymorphisms of glutathione S-transferase omega 1 and 2, urinary arsenic methylation profile and urothelial carcinoma. Sci Total Environ 2011; 409:465-70.

Mukherjee B, Salavaggione OE, Pelleymounter LL et al. Glutathione S-transferase omega 1 and omega 2 pharmacogenomics. Drug Metab Dispos 2006; 34:1237-46.

Ozturk A, Desai PP, Minster RL, Dekosky ST, Kamboh MI. Three SNPs in the GSTO1, GSTO2 and PRSS11 genes on chromosome 10 are not associated with age-at-onset of Alzheimer’s disease. Neurobiol Aging 2005; 26:1161-5.

Paiva L, Marcos R, Creus A, Coggan M, Oakley AJ, Board PG. Polymorphism of glutathione transferase Omega 1 in a population exposed to a high environmental arsenic burden. Pharmacogenet Genomics 2008; 18:1-10.

Pongstaporn W, Rochanawutanon M, Wilailak S, Linasamita V, Weerakiat S, Petmitr S. Genetic alterations in chromosome 10q24. 3 and glutathione S-transferase omega 2 gene polymorphism in ovarian cancer. J Exp Clin Cancer Res 2006; 25:107-14.

Wang L, Xu J, Ji C et al. Cloning, expression and characterization of human glutathione S-transferase Omega 2. Int J Mol Med 2005; 16:19-27.

Whitbread AK, Tetlow N, Eyre HJ, Sutherland GR, Board PG. Characterization of the human Omega class glutathione transferase genes and associated polymorphisms. Pharmacogenetics 2003; 13:131-44.

GSTP1 (glutathione S-transferase pi 1)

Allan JM, Wild CP, Rollinson S et al. Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc Natl Acad Sci USA 2001; 98:11592-7.

Bellincampi L, Ballerini S, Bernardini S et al. Glutathione transferase P1 polymorphism in neuroblastoma studied by endonuclease restriction mapping. Clin Chem Lab Med 2001; 39:830-5.

Chen YL, Tseng HS, Kuo WH, Yang SF, Chen DR, Tsai HT. Glutathione S-Transferase P1 (GSTP1) gene polymorphism increases age-related susceptibility to hepatocellular carcinoma. BMC Med Genet 2010; 11:46.

Cote ML, Chen W, Smith DW et al. Meta- and pooled analysis of GSTP1 polymorphism and lung cancer: a HuGE-GSEC review. Am J Epidemiol 2009; 169:802-14.

Custódio AC, Almeida LO, Pinto GR et al. GSTP1 Ile105Val polymorphism in astrocytomas and glioblastomas. Genet Mol Res 2010; 9:2328-34.

Dang DT, Chen F, Kohli M, Rago C, Cummins JM, Dang LH. Glutathione S-transferase pi1 promotes tumorigenicity in HCT116 human colon cancer cells. Cancer Res 2005; 65:9485-94.

Deng Y, Newman B, Dunne MP, Silburn PA, Mellick GD. Case-only study of interactions between genetic polymorphisms of GSTM1, P1, T1 and Z1 and smoking in Parkinson’s disease. Neurosci Lett 2004; 366:326-31.

Ekhart C, Doodeman VD, Rodenhuis S, Smits PH, Beijnen JH, Huitema AD. Polymorphisms of drug-metabolizing enzymes (GST, CYP2B6 and CYP3A) affect the pharmacokinetics of thiotepa and tepa. Br J Clin Pharmacol 2009; 67:50-60.

Franko A, Dolzan V, Arnerić N, Dodic-Fikfak M. The influence of genetic polymorphisms of GSTP1 on the development of asbestosis. J Occup Environ Med 2008; 50:7-12.

Goekkurt E, Hoehn S, Wolschke C et al. Polymorphisms of glutathione S-transferases (GST) and thymidylate synthase (TS)-novel predictors for response and survival in gastric cancer patients. Br J Cancer 2006; 94:281-6.

Harbottle A, Daly AK, Atherton K, Campbell FC. Role of glutathione S-transferase P1, P-glycoprotein and multidrug resistance-associated protein 1 in acquired doxorubicin resistance. Int J Cancer 2001; 92:777-83.

Higasa S, Tsujimura M, Hiraoka M et al. Polymorphism of glutathione S-transferase P1 gene affects human vitamin C metabolism. Biochem Biophys Res Commun 2007; 364:708-13.

Higasa S, Tsujimura M, Hiraoka M et al. Genetic polymorphisms of xenobiotic enzymes affect human vitamin C excretion. Asia Pac J Public Health 2008; 20 Suppl:70-9.

Kishi S, Yang W, Boureau B et al. Effects of prednisone and genetic polymorphisms on etoposide disposition in children with acute lymphoblastic leukemia. Blood 2004; 103:67-72.

Kweekel DM, Koopman M, Antonini NF et al. GSTP1 Ile105Val polymorphism correlates with progression-free survival in MCRC patients treated with or without irinotecan: a study of the Dutch Colorectal Cancer Group. Br J Cancer 2008; 99:1316-21.

Ladero JM, Martínez C, Fernández JM et al. Glutathione S-transferases pi 1, alpha 1 and M3 genetic polymorphisms and the risk of hepatocellular carcinoma in humans. Pharmacogenomics 2007; 8:895-9.

Le Morvan V, Bellott R, Moisan F, Mathoulin-Pélissier S, Bonnet J, Robert J. Relationships between genetic polymorphisms and anticancer drug cytotoxicity vis-à-vis the NCI-60 panel. Pharmacogenomics 2006; 7:843-52.

Li D, Dandara C, Parker MI. The 341C/T polymorphism in the GSTP1 gene is associated with increased risk of oesophageal cancer. BMC Genet 2010; 11:47.

Li QF, Yao RY, Liu KW, Lv HY, Jiang T, Liang J. Genetic polymorphism of GSTP1: prediction of clinical outcome to oxaliplatin/5-FU-based chemotherapy in advanced gastric cancer. J Korean Med Sci 2010; 25:846-52.

Meiers I, Shanks JH, Bostwick DG. Glutathione S-transferase pi (GSTP1) hypermethylation in prostate cancer: review 2007. Pathology 2007; 39:299-304.

Mo Z, Gao Y, Cao Y, Gao F, Jian L. An updating meta-analysis of the GSTM1, GSTT1, and GSTP1 polymorphisms and prostate cancer: a HuGE review. Prostate 2009; 69:662-88.

Mukanganyama S, Widersten M, Naik YS, Mannervik B, Hasler JA. Inhibition of glutathione S-transferases by antimalarial drugs possible implications for circumventing anticancer drug resistance. Int J Cancer 2002; 97:700-5.

Nazar-Stewart V, Vaughan TL, Stapleton P, van Loo J, Nicol-Blades B, Eaton DL. A population-based study of glutathione S-transferase M1, T1 and P1 genotypes and risk for lung cancer. Lung Cancer 2003; 40:247-58.

Oldenburg J, Kraggerud SM, Brydøy M, Cvancarova M, Lothe RA, Fossa SD. Association between long-term neuro-toxicities in testicular cancer survivors and polymorphisms in glutathione-s-transferase-P1 and -M1, a retrospective cross sectional study. J Transl Med 2007; 5:70.

Paré L, Marcuello E, Altés A et al. Pharmacogenetic prediction of clinical outcome in advanced colorectal cancer patients receiving oxaliplatin/5-fluorouracil as first-line chemotherapy. Br J Cancer 2008; 99:1050-5.

Peklak-Scott C, Smitherman PK, Townsend AJ, Morrow CS. Role of glutathione S-transferase P1-1 in the cellular detoxification of cisplatin. Mol Cancer Ther 2008; 7:3247-55.

Ruzzo A, Graziano F, Kawakami K et al. Pharmacogenetic profiling and clinical outcome of patients with advanced gastric cancer treated with palliative chemotherapy. J Clin Oncol 2006; 24:1883-91.

Schultz EN, Devadason SG, Khoo SK et al. The role of GSTP1 polymorphisms and tobacco smoke exposure in children with acute asthma. J Asthma 2010; 47:1049-56.

Sergentanis TN, Economopoulos KP. GSTT1 and GSTP1 polymorphisms and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 2010; 121:195-202.

Sivonová M, Waczulíková I, Dobrota D et al. Polymorphisms of glutathione-S-transferase M1, T1, P1 and the risk of prostate cancer: a case-control study. J Exp Clin Cancer Res 2009; 28:32.

Smeyne M, Boyd J, Raviie Shepherd K et al. GSTpi expression mediates dopaminergic neuron sensitivity in experimental parkinsonism. Proc Natl Acad Sci USA 2007; 104:1977-82.

Stoehlmacher J, Park DJ, Zhang W et al. A multivariate analysis of genomic polymorphisms: prediction of clinical outcome to 5-FU/oxaliplatin combination chemotherapy in refractory colorectal cancer. Br J Cancer 2004; 91:344-54.

Sun XF, Ahmadi A, Arbman G, Wallin A, Asklid D, Zhang H. Polymorphisms in sulfotransferase 1A1 and glutathione S-transferase P1 genes in relation to colorectal cancer risk and patients’ survival. World J Gastroenterol 2005; 11:6875-9.

Tahara T, Shibata T, Nakamura M et al. Association between polymorphisms in the XRCC1 and GST genes, and CpG island methylation status in colonic mucosa in ulcerative colitis. Virchows Arch 2011; 458:205-11.

Zhong S, Huang M, Yang X et al. Relationship of glutathione S-transferase genotypes with side-effects of pulsed cyclophosphamide therapy in patients with systemic lupus erythematosus. Br J Clin Pharmacol 2006; 62:457-72.

Zielińska E, Zubowska M, Misiura K. Role of GSTM1, GSTP1, and GSTT1 gene polymorphism in ifosfamide metabolism affecting neurotoxicity and nephrotoxicity in children. J Pediatr Hematol Oncol 2005; 27:582-9.

GSTT1 (glutathione S-transferase theta 1)

Altinisik J, Balta ZB, Aydin G, Ulutin T, Buyru N. Investigation of glutathione S-transferase M1 and T1 deletions in lung cancer. Mol Biol Rep 2010; 37:263-7.

Angelini S, Kumar R, Carbone F et al. Inherited susceptibility to bleomycin-induced micronuclei: correlating polymorphisms in GSTT1, GSTM1 and DNA repair genes with mutagen sensitivity. Mutat Res 2008; 638:90-7.

Chen H, Sandler DP, Taylor JA et al. Increased risk for myelodysplastic syndromes in individuals with glutathione transferase theta 1 (GSTT1) gene defect. Lancet 1996; 347:295-7.

Diedrich A, Bock HC, König F et al. Expression of glutathione S-transferase T1 (GSTT1) in human brain tumours. Histol Histopathol 2006; 21:1199-207.

Doney AS, Lee S, Leese GP, Morris AD, Palmer CN. Increased cardiovascular morbidity and mortality in type 2 diabetes is associated with the glutathione S transferase theta-null genotype: a Go-DARTS study. Circulation 2005; 111:2927-34.

Gates MA, Tworoger SS, Terry KL et al. Talc use, variants of the GSTM1, GSTT1, and NAT2 genes, and risk of epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 2008; 17:2436-44.

Hori M, Oniki K, Ueda K et al. Combined glutathione S-transferase T1 and M1 positive genotypes afford protection against type 2 diabetes in Japanese. Pharmacogenomics 2007; 8:1307-14.

Khan MI, Micheal S, Akhtar F et al. The association of glutathione S-transferase GSTT1 and GSTM1 gene polymorphism with pseudoexfoliative glaucoma in a Pakistani population. Mol Vis 2010; 16:2146-52.

Kühne A, Sezer O, Heider U et al. Population pharmacokinetics of melphalan and glutathione S-transferase polymorphisms in relation to side effects. Clin Pharmacol Ther 2008; 83:749-57.

Landi S. Mammalian class theta GST and differential susceptibility to carcinogens: a review. Mutat Res 2000; 463:247-83.

Liao C, Cao Y, Wu L, Huang J, Gao F. An updating meta-analysis of the glutathione S-transferase T1 polymorphisms and colorectal cancer risk: a HuGE review. Int J Colorectal Dis 2010; 25:25-37.

Lien S, Larsson AK, Mannervik B. The polymorphic human glutathione transferase T1-1, the most efficient glutathione transferase in the denitrosation and inactivation of the anticancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea. Biochem Pharmacol 2002; 63:191-7.

Naoe T, Tagawa Y, Kiyoi H et al. Prognostic significance of the null genotype of glutathione S-transferase-T1 in patients with acute myeloid leukemia: increased early death after chemotherapy. Leukemia 2002; 16:203-8.

Nukui T, Day RD, Sims CS, Ness RB, Romkes M. Maternal/newborn GSTT1 null genotype contributes to risk of preterm, low birthweight infants. Pharmacogenetics 2004; 14:569-76.

Olvera-Bello AE, Estrada-Muñiz E, Elizondo G, Vega L. Susceptibility to the cytogenetic effects of dichloromethane is related to the glutathione S-transferase theta phenotype. Toxicol Lett 2010; 199:218-24.

Pirmohamed M, Alfirevic A, Vilar J et al. Association analysis of drug metabolizing enzyme gene polymorphisms in HIV-positive patients with co-trimoxazole hypersensitivity. Pharmacogenetics 2000; 10:705-13.

Polonikov AV, Yarosh SL, Kokhtenko EV, Starodubova NI, Pakhomov SP, Orlova VS. The functional genotype of glutathione S-transferase T1 gene is strongly associated with increased risk of idiopathic infertility in Russian men. Fertil Steril 2010; 94:1144-7.

Souiden Y, Mahdouani M, Chaieb K, Elkamel R, Mahdouani K. Polymorphisms of glutathione-S-transferase M1 and T1 and prostate cancer risk in a Tunisian population. Cancer Epidemiol 2010; 34:598-603.

Syamala VS, Sreeja L, Syamala V et al. Influence of germline polymorphisms of GSTT1, GSTM1, and GSTP1 in familial versus sporadic breast cancer susceptibility and survival. Fam Cancer 2008; 7:213-20.

Tahara T, Shibata T, Nakamura M et al. Association between polymorphisms in the XRCC1 and GST genes, and CpG island methylation status in colonic mucosa in ulcerative colitis. Virchows Arch 2011; 458:205-11.

Thier R, Brüning T, Roos PH et al. Markers of genetic susceptibility in human environmental hygiene and toxicology: the role of selected CYP, NAT and GST genes. Int J Hyg Environ Health 2003; 206:149-71.

Ueda K, Ishitsu T, Seo T et al. Glutathione S-transferase M1 null genotype as a risk factor for carbamazepine-induced mild hepatotoxicity. Pharmacogenomics 2007; 8:435-42.

van Eyken E, van Camp G, Fransen E et al. Contribution of the N-acetyltransferase 2 polymorphism NAT2*6A to age-related hearing impairment. J Med Genet 2007; 44:570-8.

Wilms LC, Claughton TA, de Kok TM, Kleinjans JC. GSTM1 and GSTT1 polymorphism influences protection against induced oxidative DNA damage by quercetin and ascorbic acid in human lymphocytes in vitro. Food Chem Toxicol 2007; 45:2592-6.

 A B C D E F G H I K L M N O P R S T U V W X Z