Gene References


F2 (coagulation factor II (thrombin))

Ahmad A. Genetics of cerebral venous thrombosis. J Pak Med Assoc 2006; 56:488-90.

Akhavan S, de Cristofaro R, Peyvandi F, Lavoretano S, Landolfi R, Mannucci PM. Molecular and functional characterization of a natural homozygous Arg67His mutation in the prothrombin gene of a patient with a severe procoagulant defect contrasting with a mild hemorrhagic phenotype. Blood 2002; 100:1347-53.

Banfield DK, MacGillivray RT. Partial characterization of vertebrate prothrombin cDNAs: amplification and sequence analysis of the B chain of thrombin from nine different species. Proc Natl Acad Sci USA 1992; 89:2779-83.

Board PG, Shaw DC. Determination of the amino acid substitution in human prothrombin type 3 (157 Glu leads to Lys) and the localization of a third thrombin cleavage site. Br J Haematol 1983; 54:245-54.

Brüggemann LW, Schoenmakers SH, Groot AP, Reitsma PH, Spek CA. Role of the factor V Leiden mutation in septic peritonitis assessed in factor V Leiden transgenic mice. Crit Care Med 2006; 34:2201-6.

Casas JP, Hingorani AD, Bautista LE, Sharma P. Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18000 cases and 58000 controls. Arch Neurol 2004; 61:1652-61.

Coen D, Zadro R, Honović L, Banfić L, Stavljenić Rukavina A. Prevalence and association of the factor V Leiden and prothrombin G20210A in healthy subjects and patients with venous thromboembolism. Croat Med J 2001; 42:488-92.

D’Ambrosio RL, D’Andrea G, Cappucci F et al. Polymorphisms in factor II and factor VII genes modulate oral anticoagulation with warfarin. Haematologica 2004; 89:1510-6.

Emmerich J, Rosendaal FR, Cattaneo M. Combined effect of factor V Leiden and prothrombin 20210A on the risk of venous thromboembolism-pooled analysis of 8 case-control studies including 2310 cases and 3204 controls. Study Group for Pooled-Analysis in Venous Thromboembolism. Thromb Haemost 2001; 86:809-16.

Henriksen RA, Mann KG. Substitution of valine for glycine-558 in the congenital dysthrombin thrombin Quick II alters primary substrate specificity. Biochemistry 1989; 28:2078-82.

Inomoto T, Shirakami A, Kawauchi S et al. Prothrombin Tokushima: characterization of dysfunctional thrombin derived from a variant of human prothrombin. Blood 1987; 69:565-9.

Lefkowitz JB, Haver T, Clarke S et al. The prothrombin Denver patient has two different prothrombin point mutations resulting in Glu-300->Lys and Glu-309->Lys substitutions. Br J Haematol 2000; 108:182-7.

Liu XY, Gabig TG, Bang NU. Combined heterozygosity of factor V leiden and the G20210A prothrombin gene mutation in a patient with cerebral cortical vein thrombosis. Am J Hematol 2000; 64:226-8.

Martinelli I, Sacchi E, Landi G, Taioli E, Duca F, Mannucci PM. High risk of cerebral-vein thrombosis in carriers of a prothrombin-gene mutation and in users of oral contraceptives. N Engl J Med 1998; 338:1793-7.

Martinelli I, Taioli E, Bucciarelli P, Akhavan S, Mannucci PM. Interaction between the G20210A mutation of the prothrombin gene and oral contraceptive use in deep vein thrombosis. Arterioscler Thromb Vasc Biol 1999; 19:700-3.

Miyata T, Morita T, Inomoto T, Kawauchi S, Shirakami A, Iwanaga S. Prothrombin Tokushima, a replacement of arginine-418 by tryptophan that impairs the fibrinogen clotting activity of derived thrombin Tokushima. Biochemistry 1987; 26:1117-22.

Morishita E, Saito M, Kumabashiri I, Asakura H, Matsuda T, Yamaguchi K. Prothrombin Himi: a compound heterozygote for two dysfunctional prothrombin molecules (Met-337→Thr and Arg-388→His). Blood 1992; 80:2275-80.

Pérez-Andreu V, Roldán V, Antón AI et al. Pharmacogenetic relevance of CYP4F2 V433M polymorphism on acenocoumarol therapy. Blood 2009; 113:4977-9.

Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common genetic variation in the 3’-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996; 88:3698-703.

Psaty BM, Smith NL, Lemaitre RN et al. Hormone replacement therapy, prothrombotic mutations, and the risk of incident nonfatal myocardial infarction in postmenopausal women. JAMA 2001; 285:906-13.

Rabiet MJ, Furie BC, Furie B. Molecular defect of prothrombin Barcelona. Substitution of cysteine for arginine at residue 273. J Biol Chem 1986; 261:15045-8.

Rouy S, Vidaud D, Alessandri JL et al. Prothrombin Saint-Denis: a natural variant with a point mutation resulting in Asp to Glu substitution at position 552 in prothrombin. Br J Haematol 2006; 132:770-3.

Rungroj N, Sritippayawan S, Thongnoppakhun W et al. Prothrombin haplotype associated with kidney stone disease in Northeastern Thai patients. Urology 2011; 77:249.

Shikata E, Ieiri I, Ishiguro S et al. Association of pharmacokinetic (CYP2C9) and pharmacodynamic (factors II, VII, IX, and X; proteins S and C; and gamma-glutamyl carboxylase) gene variants with warfarin sensitivity. Blood 2004; 103:2630-5.

Sun WY, Coleman MJ, Witte DP, Degen SJ. Rescue of prothrombin-deficiency by transgene expression in mice. Thromb Haemost 2002; 88:984-91.

Zivelin A, Mor-Cohen R, Kovalsky V et al. Prothrombin 20210G>A is an ancestral prothrombotic mutation that occurred in whites approximately 24,000 years ago. Blood 2006; 107:4666-8.

F5 (coagulation factor V (proaccelerin, labile factor))

Andreassi MG, Botto N, Maffei S. Factor V Leiden, prothrombin G20210A substitution and hormone therapy: indications for molecular screening. Clin Chem Lab Med 2006; 44:514-21.

Asselta R, Peyvandi F. Factor V deficiency. Semin Thromb Hemost 2009; 35:382-9.

Casas JP, Hingorani AD, Bautista LE, Sharma P. Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18000 cases and 58000 controls. Arch Neurol 2004; 61:1652-61.

Cui J, Eitzman DT, Westrick RJ et al. Spontaneous thrombosis in mice carrying the factor V Leiden mutation. Blood 2000; 96:4222-6.

Chan WP, Lee CK, Kwong YL, Lam CK, Liang R. A novel mutation of Arg306 of factor V gene in Hong Kong Chinese. Blood 1998; 91:1135-9.

Doggen CJ, Cats VM, Bertina RM, Rosendaal FR. Interaction of coagulation defects and cardiovascular risk factors: increased risk of myocardial infarction associated with factor V Leiden or prothrombin 20210A. Circulation 1998; 97:1037-41.

Faisel F, Romppanen EL, Hiltunen M et al. Susceptibility to pre-eclampsia in Finnish women is associated with R485K polymorphism in the factor V gene, not with Leiden mutation. Eur J Hum Genet 2004; 12:187-91.

Huang JN, Koerper MA. Factor V deficiency: a concise review. Haemophilia 2008; 14:1164-9.

Janssen HL, Meinardi JR, Vleggaar FP et al. Factor V Leiden mutation, prothrombin gene mutation, and deficiencies in coagulation inhibitors associated with Budd-Chiari syndrome and portal vein thrombosis: results of a case-control study. Blood 2000; 96:2364-8.

Lalouschek W, Schillinger M, Hsieh K et al. Matched case-control study on factor V Leiden and the prothrombin G20210A mutation in patients with ischemic stroke/transient ischemic attack up to the age of 60 years. Stroke 2005; 36:1405-9.

Leung A, Huang CK, Muto R, Liu Y, Pan Q. CYP2C9 and VKORC1 genetic polymorphism analysis might be necessary in patients with Factor V Leiden and prothrombin gene G2021A mutation(s). Diagn Mol Pathol 2007; 16:184-6.

Mahmoud AE, Elias E, Beauchamp N, Wilde JT. Prevalence of the factor V Leiden mutation in hepatic and portal vein thrombosis. Gut 1997; 40:798-800.

Mann KG, Kalafatis M. Factor V: a combination of Dr Jekyll and Mr Hyde. Blood 2003; 101:20-30.

Mannucci PM, Asselta R, Duga S et al. The association of factor V Leiden with myocardial infarction is replicated in 1880 patients with premature disease. J Thromb Haemost 2010; 8:2116-21.

Martinelli I, Taioli E, Bucciarelli P, Akhavan S, Mannucci PM. Interaction between the G20210A mutation of the prothrombin gene and oral contraceptive use in deep vein thrombosis. Arterioscler Thromb Vasc Biol 1999; 19:700-3.

Mumford AD, McVey JH, Morse CV et al. Factor V I359T: a novel mutation associated with thrombosis and resistance to activated protein C. Br J Haematol 2003; 123:496-501.

Price DT, Ridker PM. Factor V Leiden mutation and the risks for thromboembolic disease: a clinical perspective. Ann Intern Med 1997; 127:895-903.

Ridker PM, Hennekens CH, Lindpaintner K et al. Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men. N Engl J Med 1995; 332:912-7.

Sweeney JD, Blair AJ, Dupuis MP, King TC, Moulton AL. Aprotinin, cardiac surgery, and factor V Leiden. Transfusion 1997; 37:1173-8.

Williamson D, Brown K, Luddington R, Baglin C, Baglin T. Factor V Cambridge: a new mutation (Arg306→Thr) associated with resistance to activated protein C. Blood 1998; 91:1140-4.

Yan SB, Nelson DR. Effect of factor V Leiden polymorphism in severe sepsis and on treatment with recombinant human activated protein C. Crit Care Med 2004; 32:239-46.

Zee RY, Cook NR, Cheng S, Erlich HA, Lindpaintner K, Ridker PM. Polymorphism in the beta2-adrenergic receptor and lipoprotein lipase genes as risk determinants for idiopathic venous thromboembolism: a multilocus, population-based, prospective genetic analysis. Circulation 2006; 113:2193-200.

F7 (coagulation factor VII (serum prothrombin conversion accelerator))

Aljamali MN, Margaritis P, Schlachterman A et al. Long-term expression of murine activated factor VII is safe, but elevated levels cause premature mortality. J Clin Invest 2008; 118:1825-34.

Arbini AA, Mannucci M, Bauer KA. A Thr359Met mutation in factor VII of a patient with a hereditary deficiency causes defective secretion of the molecule. Blood 1996; 87:5085-94.

Arbini AA, Pollak ES, Bayleran JK, High KA, Bauer KA. Severe factor VII deficiency due to a mutation disrupting a hepatocyte nuclear factor 4 binding site in the factor VII promoter. Blood 1997; 89:176-82.

Au WY, Lam CC, Chan EC, Kwong YL. Two novel factor VII gene mutations in a Chinese family with factor VII deficiency. Br J Haematol 2000; 111:143-5.

Bernardi F, Castaman G, Redaelli R et al. Topologically equivalent mutations causing dysfunctional coagulation factors VII (294Ala→Val) and X (334Ser→Pro). Hum Mol Genet 1994; 3:1175-7.

Bharadwaj D, Iino M, Kontoyianni M, Smith KJ, Foster DC, Kisiel W. Factor VII central. A novel mutation in the catalytic domain that reduces tissue factor binding, impairs activation by factor Xa, and abolishes amidolytic and coagulant activity. J Biol Chem 1996; 271:30685-91.

Carew JA, Pollak ES, High KA, Bauer KA. Severe factor VII deficiency due to a mutation disrupting an Sp1 binding site in the factor VII promoter. Blood 1998; 92:1639-45.

Carew JA, Pollak ES, Lopaciuk S, Bauer KA. A new mutation in the HNF4 binding region of the factor VII promoter in a patient with severe factor VII deficiency. Blood 2000; 96:4370-2.

Girelli D, Russo C, Ferraresi P et al. Polymorphisms in the factor VII gene and the risk of myocardial infarction in patients with coronary artery disease. N Engl J Med 2000; 343:774-80.

Herman D, Peternel P, Stegnar M, Breskvar K, Dolzan V. The influence of sequence variations in factor VII, gamma-glutamyl carboxylase and vitamin K epoxide reductase complex genes on warfarin dose requirement. Thromb Haemost 2006; 95:782-7.

Hwang G, Müller F, Rahman MA et al. Fish as bioreactors: transgene expression of human coagulation factor VII in fish embryos. Mar Biotechnol 2004; 6:485-92.

Lapecorella M, Mariani G; International Registry on Congenital Factor VII Deficiency. Factor VII deficiency: defining the clinical picture and optimizing therapeutic options. Haemophilia 2008; 14:1170-5.

Marchetti G, Ferrati M, Patracchini P, Redaelli R, Bernardi F. A missense mutation (178Cys→Tyr) and two neutral dimorphisms (115His and 333Ser) in the human coagulation factor VII gene. Hum Mol Genet 1993; 2:1055-6.

Marchetti G, Patracchini P, Gemmati D et al. Detection of two missense mutations and characterization of a repeat polymorphism in the factor VII gene (F7). Hum Genet 1992; 89:497-502.

Mariani G, Bernardi F. Factor VII Deficiency. Semin Thromb Hemost 2009; 35:400-6.

O’Brien DP, Gale KM, Anderson JS et al. Purification and characterization of factor VII 304-Gln: a variant molecule with reduced activity isolated from a clinically unaffected male. Blood 1991; 78:132-40.

Ohiwa M, Hayashi T, Wada H, Minamikawa K, Shirakawa S, Suzuki K. Factor VII Mie: homozygous asymptomatic type I deficiency caused by an amino acid substitution of His (CAC) for Arg(247) (CGC) in the catalytic domain. Thromb Haemost 1994; 71:773-7.

Parmeggiani F, Costagliola C, Gemmati D et al. Predictive role of coagulation-balance gene polymorphisms in the efficacy of photodynamic therapy with verteporfin for classic choroidal neovascularization secondary to age-related macular degeneration. Pharmacogenet Genomics 2007; 17:1039-46.

Pinotti M, Toso R, Girelli D et al. Modulation of factor VII levels by intron 7 polymorphisms: population and in vitro studies. Blood 2000; 95:3423-8.

Shikata E, Ieiri I, Ishiguro S et al. Association of pharmacokinetic (CYP2C9) and pharmacodynamic (factors II, VII, IX, and X; proteins S and C; and gamma-glutamyl carboxylase) gene variants with warfarin sensitivity. Blood 2004; 103:2630-5.

Takamiya O, Hino K. A patient homozygous for a Gly354Cys mutation in factor VII that results in severely impaired secretion of the molecule, but not complete deficiency. Br J Haematol 2004; 124:336-42.

Tamary H, Fromovich Y, Shalmon L et al. Ala244Val is a common, probably ancient mutation causing factor VII deficiency in Moroccan and Iranian Jews. Thromb Haemost 1996; 76:283-91.

Wadelius M, Chen LY, Eriksson N et al. Association of warfarin dose with genes involved in its action and metabolism. Hum Genet 2007; 121:23-34.

Yang Q, Kathiresan S, Lin JP, Tofler GH, O’Donnell CJ. Genome-wide association and linkage analyses of hemostatic factors and hematological phenotypes in the Framingham Heart Study. BMC Med Genet 2007; 8 Suppl 1:12.

FABP1 (fatty acid binding protein 1, liver)

Brouillette C, Bossé Y, Pérusse L, Gaudet D, Vohl MC. Effect of liver fatty acid binding protein (FABP) T94A missense mutation on plasma lipoprotein responsiveness to treatment with fenofibrate. J Hum Genet 2004; 49:424-32.

Fisher E, Weikert C, Klapper M et al. L-FABP T94A is associated with fasting triglycerides and LDL-cholesterol in women. Mol Genet Metab 2007; 91:278-84.

Gao N, Qu X, Yan J, Huang Q, Yuan HY, Ouyang DS. L-FABP T94A decreased fatty acid uptake and altered hepatic triglyceride and cholesterol accumulation in Chang liver cells stably transfected with L-FABP. Mol Cell Biochem 2010; 345:207-14.

Haluzík MM, Anderlová K, Dolezalová R et al. Serum adipocyte fatty acid binding protein levels in patients with type 2 diabetes mellitus and obesity: the influence of fenofibrate treatment. Physiol Res 2009; 58:93-9.

Kamijo A, Kimura K, Sugaya T et al. Urinary fatty acid-binding protein as a new clinical marker of the progression of chronic renal disease. J Lab Clin Med 2004; 143:23-30.

Robitaille J, Brouillette C, Lemieux S, Pérusse L, Gaudet D, Vohl MC. Plasma concentrations of apolipoprotein B are modulated by a gene-diet interaction effect between the LFABP T94A polymorphism and dietary fat intake in French-Canadian men. Mol Genet Metab 2004; 82:296-303.

Weickert MO, Loeffelholz CV, Roden M et al. A Thr94Ala mutation in human liver fatty acid-binding protein contributes to reduced hepatic glycogenolysis and blunted elevation of plasma glucose levels in lipid-exposed subjects. Am J Physiol Endocrinol Metab 2007; 293:1078-84.

Yamada Y, Kato K, Oguri M et al. Association of genetic variants with atherothrombotic cerebral infarction in Japanese individuals with metabolic syndrome. Int J Mol Med 2008; 21:801-8.

FABP2 (fatty acid binding protein 2, intestinal)

Baier LJ, Sacchettini JC, Knowler WC et al. An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance. J Clin Invest 1995; 95:1281-7.

Chang XT, Wang ZH, Du X et al. Effect of polymorphism of human intestinal fatty acid binding protein gene on the therapeutic efficacy of fenofibrate. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2006; 28:230-3.

de Luis DA, Sagrado MG, Aller R, Izaola O, Conde R. Influence of ALA54THR polymorphism of fatty acid-binding protein 2 on obesity and cardiovascular risk factors. Horm Metab Res 2007; 39:830-4.

de Luis DA, Sagrado MG, Aller R, Izaola O, Conde R, Romero E. Ala54Thr Polymorphism of Fatty Acid Binding Protein 2, Role on Insulin Resistance and Cardiovascular Risk Factors in Presurgical Morbid Obesity Patients. Obes Surg 2010; 19:1691-6.

Formanack ML, Baier LJ. Variation in the FABP2 promoter affects gene expression: implications for prior association studies. Diabetologia 2004; 47:349-51.

Galluzzi JR, Cupples LA, Otvos JD, Wilson PW, Schaefer EJ, Ordovas JM. Association of the A/T54 polymorphism in the intestinal fatty acid binding protein with variations in plasma lipids in the Framingham Offspring Study. Atherosclerosis 2001; 159:417-24.

Klapper M, Böhme M, Nitz I, Döring F. Type 2 diabetes-associated fatty acid binding protein 2 promoter haplotypes are differentially regulated by GATA factors. Hum Mutat 2008; 29:142-9.

Lara-Castro C, Hunter GR, Lovejoy JC, Gower BA, Fernández JR. Association of the intestinal fatty acid-binding protein Ala54Thr polymorphism and abdominal adipose tissue in African-American and Caucasian women. J Clin Endocrinol Metab 2005; 90:1196-201.

Mericq V, Iñíguez G, Martínez A et al. Ala54Thr polymorphism of the fatty acid-binding protein 2 gene (intestinal-type FABP) is associated with changes in insulin sensitivity in SGA pubertal girls. J Pediatr Endocrinol Metab 2008; 21:117-25.

Okada T, Sato-Furuhashi N, Iwata F, Mugishima H. The interaction between intestinal fatty acid-binding protein 2 polymorphism and delta-6 desaturase activity in obese children. Am J Clin Nutr 2008; 87:1066-7.

Pihlajamäki J, Rissanen J, Heikkinen S et al. Codon 54 polymorphism of the human intestinal fatty acid binding protein 2 gene is associated with dyslipidemias but not with insulin resistance in patients with familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol 1997; 17:1039-44.

Pishva H, Mahboob SA, Mehdipour P et al. Fatty acid-binding protein-2 genotype influences lipid and lipoprotein response to eicosapentaenoic acid supplementation in hypertriglyceridemic subjects. Nutrition 2010; 26:1117-21.

Prochazka M, Lillioja S, Tait JF et al. Linkage of chromosomal markers on 4q with a putative gene determining maximal insulin action in Pima Indians. Diabetes 1993; 42:514-9.

Tavridou A, Arvanitidis KI, Tiptiri-Kourpeti A et al. Thr54 allele of fatty-acid binding protein 2 gene is associated with obesity but not type 2 diabetes mellitus in a Caucasian population. Diabetes Res Clin Pract 2009; 84:132-7.

Weiss EP, Brown MD, Shuldiner AR, Hagberg JM. Fatty acid binding protein-2 gene variants and insulin resistance: gene and gene-environment interaction effects. Physiol Genomics 2002; 10:145-57.

Yoshida T, Kato K, Yokoi K et al. Association of genetic variants with chronic kidney disease in Japanese individuals with type 2 diabetes mellitus. Int J Mol Med 2009; 23:529-37.

FCER2 (Fc fragment of IgE, low affinity II, receptor for (CD23))

Chan KY, Ching JC, Xu MS et al. Association of ICAM3 genetic variant with severe acute respiratory syndrome. J Infect Dis 2007; 196:271-80.

Lima JJ, Blake KV, Tantisira KG, Weiss ST. Pharmacogenetics of asthma. Curr Opin Pulm Med 2009; 15:57-62.

Rogers AJ, Tantisira KG, Fuhlbrigge AL et al. Predictors of poor response during asthma therapy differ with definition of outcome. Pharmacogenomics 2009; 10:1231-42.

Schwarzmeier JD, Hubmann R, Düchler M, Jäger U, Shehata M. Regulation of CD23 expression by Notch2 in B-cell chronic lymphocytic leukemia. Leuk Lymphoma 2005; 46:157-65.

Shen M, Vermeulen R, Rajaraman P et al. Polymorphisms in innate immunity genes and lung cancer risk in Xuanwei, China. Environ Mol Mutagen 2009; 50:285-90.

Tantisira K. Genetic variation in FCER2: implications for children with asthma. Pharmacogenomics 2008; 9:805-7.

Tantisira KG, Silverman ES, Mariani TJ et al. FCER2: a pharmacogenetic basis for severe exacerbations in children with asthma. J Allergy Clin Immunol 2007; 120:1285-91.

FCGR2A (Fc fragment of IgG, low affinity IIa, receptor (CD32))

Ayodo G, Price AL, Keinan A et al. Combining evidence of natural selection with association analysis increases power to detect malaria-resistance variants. Am J Hum Genet 2007; 81:234-42.

Blank MC, Stefanescu RN, Masuda E et al. Decreased transcription of the human FCGR2B gene mediated by the -343 G/C promoter polymorphism and association with systemic lupus erythematosus. Hum Genet 2005; 117:220-7.

Brouwer KC, Lal RB, Mirel LB et al. Polymorphism of Fc receptor IIa for IgG in infants is associated with susceptibility to perinatal HIV-1 infection. AIDS 2004; 18:1187-94.

Burgess JK, Lindeman R, Chesterman CN, Chong BH. Single amino acid mutation of Fc gamma receptor is associated with the development of heparin-induced thrombocytopenia. Br J Haematol 1995; 91:761-6.

Cooke GS, Aucan C, Walley AJ et al. Association of Fcgamma receptor IIa (CD32) polymorphism with severe malaria in West Africa. Am J Trop Med Hyg 2003; 69:565-8.

Dijstelbloem HM, Bijl M, Fijnheer R et al. Fcgamma receptor polymorphisms in systemic lupus erythematosus: association with disease and in vivo clearance of immune complexes. Arthritis Rheum 2000; 43:2793-800.

Domingo P, Muñiz-Diaz E, Baraldès MA et al. Associations between Fc gamma receptor IIA polymorphisms and the risk and prognosis of meningococcal disease. Am J Med 2002; 112:19-25.

Hatjiharissi E, Hansen M, Santos DD et al. Genetic linkage of Fc gamma RIIa and Fc gamma RIIIa and implications for their use in predicting clinical responses to CD20-directed monoclonal antibody therapy. Clin Lymphoma Myeloma 2007; 7:286-90.

Hosgood HD 3rd, Purdue MP, Wang SS et al. A pooled analysis of three studies evaluating genetic variation in innate immunity genes and non-Hodgkin lymphoma risk. Br J Haematol 2011; 152:721-6.

Karassa FB, Bijl M, Davies KA et al. Role of the Fcgamma receptor IIA polymorphism in the antiphospholipid syndrome: an international meta-analysis. Arthritis Rheum 2003; 48:1930-8.

Laurent-Puig P, Lièvre A, Ducreux M, Loriot MA. The biological point of view on pharmacogenetics of anticancer agents in colorectal cancer. Bull Cancer 2008; 95:935-42.

Lee BC, Lee H, Park HK, Yang JS, Chung JH. Susceptibility for ischemic stroke in four constitution medicine is associated with polymorphisms of FCGR2A and IL1RN genes. Neurol Res 2010; 32 Suppl 1:43-7.

Meyer T, Robles-Carrillo L, Robson T et al. Bevacizumab immune complexes activate platelets and induce thrombosis in FCGR2A transgenic mice. J Thromb Haemost 2009; 7:171-81.

Pander J, Gelderblom H, Guchelaar HJ. Pharmacogenetics of EGFR and VEGF inhibition. Drug Discov Today 2007; 12:1054-60.

Shi YP, Nahlen BL, Kariuki S et al. Fcgamma receptor IIa (CD32) polymorphism is associated with protection of infants against high-density Plasmodium falciparum infection. VII. Asembo Bay Cohort Project. J Infect Dis 2001; 184:107-11.

Tan SY. FcgammaRIIa polymorphism in systemic lupus erythematosus. Kidney Blood Press Res 2000; 23:138-42.

van der Meer IM, Witteman JC, Hofman A, Kluft C, de Maat MP. Genetic variation in Fcgamma receptor IIa protects against advanced peripheral atherosclerosis. The Rotterdam Study. Thromb Haemost 2004; 92:1273-6.

Yeoh EJ, Ross ME, Shurtleff SA et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002; 1:133-43.

Yuan H, Pan HF, Li LH et al. Meta analysis on the association between FcgammaRIIa-R/H131 polymorphisms and systemic lupus erythematosus. Mol Biol Rep 2009; 36:1053-8.

Zhang W, Gordon M, Schultheis AM et al. FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab. J Clin Oncol 2007; 25:3712-8.

FCGR3A (Fc fragment of IgG, low affinity IIIa, receptor (CD16a))

Biron CA, Byron KS, Sullivan JL. Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med 1989; 320:1731-5.

Bronner IM, Hoogendijk JE, de Visser M et al. Association of the leukocyte immunoglobulin G (Fcgamma) receptor IIIa-158V/F polymorphism with inflammatory myopathies in Dutch patients. Tissue Antigens 2009; 73:586-9.

Cañete JD, Suárez B, Hernández MV et al. Influence of variants of Fc gamma receptors IIA and IIIA on the American College of Rheumatology and European League Against Rheumatism responses to anti-tumour necrosis factor alpha therapy in rheumatoid arthritis. Ann Rheum Dis 2009; 68:1547-52.

Cartron G, Dacheux L, Salles G et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 2002; 99:754-8.

Conesa-Zamora P, Santaclara V, Gadea-Niñoles E, Ortiz-Reina S, Perez-Guillermo M. Association of polymorphism in FcGR3A gene and progression of low-grade precursor lesions of cervical carcinoma. Hum Immunol 2010; 71:314-7.

de Vries E, Koene HR, Vossen JM et al. Identification of an unusual Fc gamma receptor IIIa (CD16) on natural killer cells in a patient with recurrent infections. Blood 1996; 88:3022-7.

Gruel Y, Pouplard C, Lasne D, Magdelaine-Beuzelin C, Charroing C, Watier H. The homozygous FcgammaRIIIa-158V genotype is a risk factor for heparin-induced thrombocytopenia in patients with antibodies to heparin-platelet factor 4 complexes. Blood 2004; 104:2791-3.

Jawahar S, Moody C, Chan M, Finberg R, Geha R, Chatila T. Natural Killer (NK) cell deficiency associated with an epitope-deficient Fc receptor type IIIA (CD16-II). Clin Exp Immunol 1996; 103:408-13.

Jönsen A, Gunnarsson I, Gullstrand B et al. Association between SLE nephritis and polymorphic variants of the CRP and FcgammaRIIIa genes. Rheumatology 2007; 46:1417-21.

Kastbom A, Bratt J, Ernestam S et al. Fcgamma receptor type IIIA genotype and response to tumor necrosis factor alpha-blocking agents in patients with rheumatoid arthritis. Arthritis Rheum 2007; 56:448-52.

Lee YH, Ji JD, Song GG. Associations between FCGR3A polymorphisms and susceptibility to rheumatoid arthritis: a metaanalysis. J Rheumatol 2008; 35:2129-35.

Louis E, El Ghoul Z, Vermeire S et al. Association between polymorphism in IgG Fc receptor IIIa coding gene and biological response to infliximab in Crohn’s disease. Aliment Pharmacol Ther 2004; 19:511-9.

Louis EJ, Watier HE, Schreiber S et al. Polymorphism in IgG Fc receptor gene FCGR3A and response to infliximab in Crohn’s disease: a subanalysis of the ACCENT I study. Pharmacogenet Genomics 2006; 16:911-4.

Nishio M, Endo T, Fujimoto K et al. FCGR3A-158V/F polymorphism may correlate with the levels of immunoglobulin in patients with non-Hodgkin’s lymphoma after rituximab treatment as an adjuvant to autologous stem cell transplantation. Eur J Haematol 2009; 82:143-7.

Pander J, Gelderblom H, Antonini NF et al. Correlation of FCGR3A and EGFR germline polymorphisms with the efficacy of cetuximab in KRAS wild-type metastatic colorectal cancer. Eur J Cancer 2010; 46:1829-34.

Rooryck C, Barnetche T, Richez C, Laleye A, Arveiler B, Schaeverbeke T. Influence of FCGR3A-V212F and TNFRSF1B-M196R genotypes in patients with rheumatoid arthritis treated with infliximab therapy. Clin Exp Rheumatol 2008; 26:340-2.

Sinha S, Prasad KN, Jain D, Nyati KK, Pradhan S, Agrawal S. Immunoglobulin IgG Fc-receptor polymorphisms and HLA class II molecules in Guillain-Barré syndrome. Acta Neurol Scand 2010; 122:21-6.

Taylor RJ, Chan SL, Wood A et al. FcgammaRIIIa polymorphisms and cetuximab induced cytotoxicity in squamous cell carcinoma of the head and neck. Cancer Immunol Immunother 2009; 58:997-1006.

Ternant D, Büchler M, Bénéton M et al. Interindividual variability in the concentration-effect relationship of antilymphocyte globulins – a possible influence of FcgammaRIIIa genetic polymorphism. Br J Clin Pharmacol 2008; 65:60-8.

Tsukahara S, Ikari K, Sato E et al. A polymorphism in the gene encoding the Fcgamma IIIA receptor is a possible genetic marker to predict the primary response to infliximab in Japanese patients with rheumatoid arthritis. Ann Rheum Dis 2008; 67:1791-2.

Tutuncu Z, Kavanaugh A, Zvaifler N, Corr M, Deutsch R, Boyle D. Fcgamma receptor type IIIA polymorphisms influence treatment outcomes in patients with inflammatory arthritis treated with tumor necrosis factor alpha-blocking agents. Arthritis Rheum 2005; 52:2693-6.

FGB (fibrinogen beta chain)

Athyros VG, Papageorgiou AA, Hatzikonstandinou HA, Athyrou VV, Kontopoulos AG. Effect of atorvastatin versus simvastatin on lipid profile and plasma fibrinogen in patients with hypercholesterolaemia: A Pilot, Randomised, Double-Blind, Dose-Titrating Study. Clin Drug Investig 1998; 16:219-27.

Carter AM, Ossei-Gerning N, Wilson IJ, Grant PJ. Association of the platelet Pl(A) polymorphism of glycoprotein IIb/IIIa and the fibrinogen Bbeta 448 polymorphism with myocardial infarction and extent of coronary artery disease. Circulation 1997; 96:1424-31.

Chen XC, Xu MT, Zhou W, Han CL, Chen WQ. A meta-analysis of relationship between beta-fibrinogen gene -148C/T polymorphism and susceptibility to cerebral infarction in Han Chinese. Chin Med J 2007; 120:1198-202.

Coulam CB, Jeyendran RS, Fishel LA, Roussev R. Multiple thrombophilic gene mutations rather than specific gene mutations are risk factors for recurrent miscarriage. Am J Reprod Immunol 2006; 55:360-8.

de Maat MP, Kastelein JJ, Jukema JW et al. -455G/A polymorphism of the beta-fibrinogen gene is associated with the progression of coronary atherosclerosis in symptomatic men: proposed role for an acute-phase reaction pattern of fibrinogen. Arterioscler Thromb Vasc Biol 1998; 18:265-71.

Dornbrook-Lavender KA, Pieper JA. Genetic polymorphisms in emerging cardiovascular risk factors and response to statin therapy. Cardiovasc Drugs Ther 2003; 17:75-82.

Gong R, Liu Z, Li L. Epistatic effect of plasminogen activator inhibitor 1 and beta-fibrinogen genes on risk of glomerular microthrombosis in lupus nephritis: interaction with environmental/clinical factors. Arthritis Rheum 2007; 56:1608-17.

Goodman CS, Coulam CB, Jeyendran RS, Acosta VA, Roussev R. Which thrombophilic gene mutations are risk factors for recurrent pregnancy loss? Am J Reprod Immunol 2006; 56:230-6.

Hua CX, Li YS, Liu YQ et al. Rapid response to lipids profile and leukocyte gene expression after rosuvastatin administration in Chinese healthy volunteers. Chin Med J 2008; 121:1215-9.

Humphries SE, Ye S, Talmud P, Bara L, Wilhelmsen L, Tiret L. European atherosclerosis research study: genotype at the fibrinogen locus (G-455-A beta-gene) is associated with differences in plasma fibrinogen levels in young men and women from different regions in Europe. Evidence for gender-genotype-environment interaction. Arterioscler Thromb Vasc Biol 1995; 15:96-104.

Kolz M, Baumert J, Gohlke H et al. Association study between variants in the fibrinogen gene cluster, fibrinogen levels and hypertension: results from the MONICA/KORA study. Thromb Haemost 2009; 101:317-24.

Lee AJ, Fowkes FG, Lowe GD, Connor JM, Rumley A. Fibrinogen, factor VII and PAI-1 genotypes and the risk of coronary and peripheral atherosclerosis: Edinburgh Artery Study. Thromb Haemost 1999; 81:553-60.

Lu XF, Yu HJ, Zhou XY, Wang LY, Huang JF, Gu DF. Influence of fibrinogen beta-chain gene variations on risk of myocardial infarction in a Chinese Han population. Chin Med J 2008; 121:1549-53.

Monaldini L, Asselta R, Duga S et al. Mutational screening of six afibrinogenemic patients: identification and characterization of four novel molecular defects. Thromb Haemost 2007; 97:546-51.

Ni Y, Hu D, Yu H et al. Association of genetic polymorphisms in the fibrinogen and platelet glycoprotein genes with unstable angina in Chinese patients. Clin Cardiol 2004; 27:455-8.

Reiner AP, Carty CL, Carlson CS et al. Association between patterns of nucleotide variation across the three fibrinogen genes and plasma fibrinogen levels: the Coronary Artery Risk Development in Young Adults (CARDIA) study. J Thromb Haemost 2006; 4:1279-87.

Sampaio MF, Hirata MH, Hirata RD et al. AMI is associated with polymorphisms in the NOS3 and FGB but not in PAI-1 genes in young adults. Clin Chim Acta 2007; 377:154-62.

Siegerink B, Rosendaal FR, Algra A. Genetic variation in fibrinogen; its relationship to fibrinogen levels and the risk of myocardial infarction and ischemic stroke. J Thromb Haemost 2009; 7:385-90.

FKBP5 (FK506 binding protein 5)

Binder EB, Bradley RG, Liu W et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 2008; 299:1291-305.

Binder EB, Salyakina D, Lichtner P et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 2004; 36:1319-25.

Brent D, Melhem N, Ferrell R et al. Association of FKBP5 polymorphisms with suicidal events in the Treatment of Resistant Depression in Adolescents (TORDIA) study. Am J Psychiatry 2010; 167:190-7.

Drago A, de Ronchi D, Serretti A. Pharmacogenetics of antidepressant response: an update. Hum Genomics 2009; 3:257-74.

Ising M, Depping AM, Siebertz A et al. Polymorphisms in the FKBP5 gene region modulate recovery from psychosocial stress in healthy controls. Eur J Neurosci 2008; 28:389-98.

Jiang W, Cazacu S, Xiang C et al. FK506 binding protein mediates glioma cell growth and sensitivity to rapamycin treatment by regulating NF-kappaB signaling pathway. Neoplasia 2008; 10:235-43.

Kato T. Molecular genetics of bipolar disorder and depression. Psychiatry Clin Neurosci 2007; 61:3-19.

Kirchheiner J, Lorch R, Lebedeva E et al. Genetic variants in FKBP5 affecting response to antidepressant drug treatment. Pharmacogenomics 2008; 9:841-6.

Lekman M, Laje G, Charney D et al. The FKBP5-gene in depression and treatment response-an association study in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Cohort. Biol Psychiatry 2008; 63:1103-10.

Tsai SJ, Hong CJ, Chen TJ, Yu YW. Lack of supporting evidence for a genetic association of the FKBP5 polymorphism and response to antidepressant treatment. Am J Med Genet B Neuropsychiatr Genet 2007; 144:1097-8.

Willour VL, Chen H, Toolan J et al. Family-based association of FKBP5 in bipolar disorder. Mol Psychiatry 2009; 14:261-8.

FLT3 (fms-related tyrosine kinase 3)

Abu-Duhier FM, Goodeve AC, Wilson GA, Care RS, Peake IR, Reilly JT. Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. Br J Haematol 2001; 113:983-8.

Armstrong SA, Mabon ME, Silverman LB et al. FLT3 mutations in childhood acute lymphoblastic leukemia. Blood 2004; 103:3544-6.

Braoudaki M, Karpusas M, Katsibardi K et al. Frequency of FLT3 mutations in childhood acute lymphoblastic leukemia. Med Oncol 2009; 26:460-2.

Choudhary C, Schwäble J, Brandts C et al. AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. Blood 2005; 106:265-73.

Clark JJ, Cools J, Curley DP et al. Variable sensitivity of FLT3 activation loop mutations to the small molecule tyrosine kinase inhibitor MLN518. Blood 2004; 104:2867-72.

Donnelly JG. Pharmacogenetics in cancer chemotherapy: balancing toxicity and response. Ther Drug Monit 2004; 26:231-5.

Gale RE, Green C, Allen C et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 2008; 111:2776-84.

Kottaridis PD, Gale RE, Frew ME et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98:1752-9.

Lee BH, Tothova Z, Levine RL et al. FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia. Cancer Cell 2007; 12:367-80.

Leow S, Kham SK, Ariffin H, Quah TC, Yeoh AE. FLT3 mutation and expression did not adversely affect clinical outcome of childhood acute leukaemia-a study of 531 Southeast Asian children by the Ma-Spore study group. Hematol Oncol 2011. doi:10. 1002/hon. 987.

Meshinchi S, Woods WG, Stirewalt DL et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001; 97:89-94.

Nakao M, Yokota S, Iwai T et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10:1911-8.

Paulsson K, Horvat A, Strömbeck B et al. Mutations of FLT3, NRAS, KRAS, and PTPN11 are frequent and possibly mutually exclusive in high hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 2008; 47:26-33.

Schmidt-Arras D, Schwäble J, Böhmer FD, Serve H. Flt3 receptor tyrosine kinase as a drug target in leukemia. Curr Pharm Des 2004; 10:1867-83.

Small D. FLT3 mutations: biology and treatment. Hematology Am Soc Hematol Educ Program 2006; 178-84.

Small D. Targeting FLT3 for the treatment of leukemia. Semin Hematol 2008; 45:17-21.

Vempati S, Reindl C, Kaza SK et al. Arginine 595 is duplicated in patients with acute leukemias carrying internal tandem duplications of FLT3 and modulates its transforming potential. Blood 2007; 110:686-94.

Yamamoto Y, Kiyoi H, Nakano Y et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97:2434-9.

Zhang W, Konopleva M, Shi YX et al. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst 2008; 100:184-98.

FMO1 (flavin containing monooxygenase 1)

Celius T, Roblin S, Harper PA et al. Aryl hydrocarbon receptor-dependent induction of flavin-containing monooxygenase mRNAs in mouse liver. Drug Metab Dispos 2008; 36:2499-505.

Furnes B, Schlenk D. Evaluation of xenobiotic N- and S-oxidation by variant flavin-containing monooxygenase 1 (FMO1) enzymes. Toxicol Sci 2004; 78:196-203.

Hernandez D, Janmohamed A, Chandan P, Omar BA, Phillips IR, Shephard EA. Deletion of the mouse Fmo1 gene results in enhanced pharmacological behavioural responses to imipramine. Pharmacogenet Genomics 2009; 19:289-99.

Hines RN, Luo Z, Hopp KA, Cabacungan ET, Koukouritaki SB, McCarver DG. Genetic variability at the human FMO1 locus: significance of a basal promoter yin yang 1 element polymorphism (FMO1*6). J Pharmacol Exp Ther 2003; 306:1210-8.

Krueger SK, Vandyke JE, Williams DE, Hines RN. The role of flavin-containing monooxygenase (FMO) in the metabolism of tamoxifen and other tertiary amines. Drug Metab Rev 2006; 38:139-47.

Krueger SK, Williams DE. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther 2005; 106:357-87.

Lee SK, Kang MJ, Jin C, In MK, Kim DH, Yoo HH. Flavin-containing monooxygenase 1-catalysed N,N-dimethylamphetamine N-oxidation. Xenobiotica 2009; 39:680-6.

Parte P, Kupfer D. Oxidation of tamoxifen by human flavin-containing monooxygenase (FMO) 1 and FMO3 to tamoxifen-N-oxide and its novel reduction back to tamoxifen by human cytochromes P450 and hemoglobin. Drug Metab Dispos 2005; 33:1446-52.

Schulz-Utermoehl T, Spear M, Pollard CR et al. In vitro hepatic metabolism of cediranib, a potent vascular endothelial growth factor tyrosine kinase inhibitor: interspecies comparison and human enzymology. Drug Metab Dispos 2010; 38:1688-97.

Tani Y, Yamamoto H, Kawaji A et al. Hepatic cytochrome P450 and flavin-containing monooxygenase in male Nts: Mini rat, a transgenic rat carrying antisense RNA transgene for rat growth hormone. Toxicol Lett 1999; 106:159-69.

Yanni SB, Annaert PP, Augustijns P et al. Role of flavin-containing monooxygenase in oxidative metabolism of voriconazole by human liver microsomes. Drug Metab Dispos 2008; 36:1119-25.

Yeung CK, Rettie AE. Benzydamine N-oxygenation as a measure of flavin-containing monooxygenase activity. Methods Mol Biol 2006; 320:157-62.

FMO2 (flavin containing monooxygenase 2 (non-functional))

Cashman JR, Zhang J. Human flavin-containing monooxygenases. Annu Rev Pharmacol Toxicol 2006; 46:65-100.

Dolphin CT, Beckett DJ, Janmohamed A et al. The flavin-containing monooxygenase 2 gene (FMO2) of humans, but not of other primates, encodes a truncated, nonfunctional protein. J Biol Chem 1998; 273:30599-607.

Francois AA, Nishida CR, de Montellano PR, Phillips IR, Shephard EA. Human flavin-containing monooxygenase 2. 1 catalyzes oxygenation of the antitubercular drugs thiacetazone and ethionamide. Drug Metab Dispos 2009; 37:178-86.

Krueger SK, Siddens LK, Henderson MC et al. Haplotype and functional analysis of four flavin-containing monooxygenase isoform 2 (FMO2) polymorphisms in Hispanics. Pharmacogenet Genomics 2005; 15:245-56.

Krueger SK, Siddens LK, Martin SR et al. Differences in FMO2*1 allelic frequency between Hispanics of Puerto Rican and Mexican descent. Drug Metab Dispos 2004; 32:1337-40.

Veeramah KR, Thomas MG, Weale ME et al. The potentially deleterious functional variant flavin-containing monooxygenase 2*1 is at high frequency throughout sub-Saharan Africa. Pharmacogenet Genomics 2008; 18:877-86.

FMO3 (flavin containing monooxygenase 3)

Dolphin CT, Janmohamed A, Smith RL, Shephard EA, Phillips IR. Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome. Nat Genet 1997; 17:491-4.

Hernandez D, Addou S, Lee D, Orengo C, Shephard EA, Phillips IR. Trimethylaminuria and a human FMO3 mutation database. Hum Mutat 2003; 22:209-13.

Hernandez D, Melidoni AN, Phillips R, Shephard EA. Microinjection of targeted embryonic stem cells and establishment of knockout mouse lines for Fmo genes. Methods Mol Biol 2006; 320:329-41.

Hisamuddin IM, Yang VW. Genetic polymorphisms of human flavin-containing monooxygenase 3: implications for drug metabolism and clinical perspectives. Pharmacogenomics 2007; 8:635-43.

Kang JH, Chung WG, Lee KH et al. Phenotypes of flavin-containing monooxygenase activity determined by ranitidine N-oxidation are positively correlated with genotypes of linked FM03 gene mutations in a Korean population. Pharmacogenetics 2000; 10:67-78.

Mayatepek E, Flock B, Zschocke J. Benzydamine metabolism in vivo is impaired in patients with deficiency of flavin-containing monooxygenase 3. Pharmacogenetics 2004; 14:775-7.

Park CS, Kang JH, Chung WG et al. Ethnic differences in allelic frequency of two flavin-containing monooxygenase 3 (FMO3) polymorphisms: linkage and effects on in vivo and in vitro FMO activities. Pharmacogenetics 2002; 12:77-80.

Schulz-Utermoehl T, Spear M, Pollard CR et al. In vitro hepatic metabolism of cediranib, a potent vascular endothelial growth factor tyrosine kinase inhibitor: interspecies comparison and human enzymology. Drug Metab Dispos 2010; 38:1688-97.

Treacy EP, Akerman BR, Chow LM et al. Mutations of the flavin-containing monooxygenase gene (FMO3) cause trimethylaminuria, a defect in detoxication. Hum Mol Genet 1998; 7:839-45.

Wang L, Christopher LJ, Cui D et al. Identification of the human enzymes involved in the oxidative metabolism of dasatinib: an effective approach for determining metabolite formation kinetics. Drug Metab Dispos 2008; 36:1828-39.

Zhang J, Tran Q, Lattard V, Cashman JR. Deleterious mutations in the flavin-containing monooxygenase 3 (FMO3) gene causing trimethylaminuria. Pharmacogenetics 2003; 13:495-500.

FMR1 (fragile X mental retardation 1)

Allingham-Hawkins DJ, Babul-Hirji R, Chitayat D et al. Fragile X premutation is a significant risk factor for premature ovarian failure: the International Collaborative POF in Fragile X study-preliminary data. Am J Med Genet 1999; 83:322-5.

den Broeder MJ, van der Linde H, Brouwer JR, Oostra BA, Willemsen R, Ketting RF. Generation and characterization of FMR1 knockout zebrafish. PLoS One 2009. doi:10. 1371/journal. pone. 0007910.

Devys D, Biancalana V, Rousseau F, Boué J, Mandel JL, Oberlé I. Analysis of full fragile X mutations in fetal tissues and monozygotic twins indicate that abnormal methylation and somatic heterogeneity are established early in development. Am J Med Genet 1992; 43:208-16.

Hagerman RJ, Leehey M, Heinrichs W et al. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 2001; 57:127-30.

Harlow EG, Till SM, Russell TA, Wijetunge LS, Kind P, Contractor A. Critical period plasticity is disrupted in the barrel cortex of FMR1 knockout mice. Neuron 2010; 65:385-98.

Hunsaker MR, Wenzel HJ, Willemsen R, Berman RF. Progressive spatial processing deficits in a mouse model of the fragile X premutation. Behav Neurosci 2009; 123:1315-24.

Jacobs S, Doering LC. Astrocytes prevent abnormal neuronal development in the fragile x mouse. J Neurosci 2010; 30:4508-14.

Jenkins EC, Sanz MM, Ray JH, Stark-Houck SL, Brown WT. Distribution of diploidy, polyploidy, and endoreduplication in fra(X) positive and negative lymphocytes, amniocytes, and chorionic villi. Am J Med Genet 1991; 38:434-6.

Kremer EJ, Pritchard M, Lynch M et al. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 1991; 252:1711-4.

Murray A, Webb J, Grimley S, Conway G, Jacobs P. Studies of FRAXA and FRAXE in women with premature ovarian failure. J Med Genet 1998; 35:637-40.

Romero-Zerbo Y, Decara J, el Bekay R et al. Protective effects of melatonin against oxidative stress in Fmr1 knockout mice: a therapeutic research model for the fragile X syndrome. J Pineal Res 2009; 46:224-34.

Tabolacci E, de Pascalis I, Accadia M et al. Modest reactivation of the mutant FMR1 gene by valproic acid is accompanied by histone modifications but not DNA demethylation. Pharmacogenet Genomics 2008; 18:738-41.

Yuskaitis CJ, Mines MA, King MK, Sweatt JD, Miller CA, Jope RS. Lithium ameliorates altered glycogen synthase kinase-3 and behavior in a mouse model of fragile X syndrome. Biochem Pharmacol 2010; 79:632-46.

FOS (FBJ murine osteosarcoma viral oncogene homolog)

Adamson ED. Two proto-oncogenes that play dual roles in embryonal cell growth and differentiation. Int J Dev Biol 1993; 37:111-6.

Bonnycastle LL, Yu CE, Wijsman EM et al. The c-fos gene and early-onset familial Alzheimer’s disease. Neurosci Lett 1993; 160:33-6.

Candeliere GA, Glorieux FH, Prud’homme J, St-Arnaud R. Increased expression of the c-fos proto-oncogene in bone from patients with fibrous dysplasia. N Engl J Med 1995; 332:1546-51.

Cruts M, Backhovens H, Martin JJ, van Broeckhoven C. Genetic analysis of the cellular oncogene fos in patients with chromosome 14 encoded Alzheimer’s disease. Neurosci Lett 1994; 174:97-100.

Cruts M, Backhovens H, Theuns J et al. Genetic and physical characterization of the early-onset Alzheimer’s disease AD3 locus on chromosome 14q24. 3. Hum Mol Genet 1995; 4:1355-64.

Curran T, Morgan JI. Fos: an immediate-early transcription factor in neurons. J Neurobiol 1995; 26:403-12.

David JP, Mehic D, Bakiri L et al. Essential role of RSK2 in c-Fos-dependent osteosarcoma development. J Clin Invest 2005; 115:664-72.

Grigoriadis AE, Wang ZQ, Wagner EF. Fos and bone cell development: lessons from a nuclear oncogene. Trends Genet 1995; 11:436-41.

Hong Y, Ho KS, Eu KW, Cheah PY. A susceptibility gene set for early onset colorectal cancer that integrates diverse signaling pathways: implication for tumorigenesis. Clin Cancer Res 2007; 13:1107-14.

Rogaev EI, Lukiw WJ, Vaula G et al. Analysis of the c-FOS gene on chromosome 14 and the promoter of the amyloid precursor protein gene in familial Alzheimer’s disease. Neurology 1993; 43:2275-9.

Rüther U, Garber C, Komitowski D, Müller R, Wagner EF. Deregulated c-fos expression interferes with normal bone development in transgenic mice. Nature 1987; 325:412-6.

Sanyal S, Sandstrom DJ, Hoeffer CA, Ramaswami M. AP-1 functions upstream of CREB to control synaptic plasticity in Drosophila. Nature 2002; 416:870-4.

Takada Y, Ray N, Ikeda E et al. Fos proteins suppress dextran sulfate sodium-induced colitis through inhibition of NF-kappaB. J Immunol 2010; 184:1014-21.

Wagner EF. Functions of AP1 (Fos/Jun) in bone development. Ann Rheum Dis 2002; 61 Suppl 2:40-2.

Weisstein JS, Majeska RJ, Klein MJ, Einhorn TA. Detection of c-fos expression in benign and malignant musculoskeletal lesions. J Orthop Res 2001; 19:339-45.

Zhang J, Zhang D, McQuade JS, Behbehani M, Tsien JZ, Xu M. c-fos regulates neuronal excitability and survival. Nat Genet 2002; 30:416-20.

FSHR (follicle stimulating hormone receptor)

Abel MH, Huhtaniemi I, Pakarinen P, Kumar TR, Charlton HM. Age-related uterine and ovarian hypertrophy in FSH receptor knockout and FSHbeta subunit knockout mice. Reproduction 2003; 125:165-73.

Behre HM, Greb RR, Mempel A et al. Significance of a common single nucleotide polymorphism in exon 10 of the follicle-stimulating hormone (FSH) receptor gene for the ovarian response to FSH: a pharmacogenetic approach to controlled ovarian hyperstimulation. Pharmacogenet Genomics 2005; 15:451-6.

de Leener A, Montanelli L, van Durme J et al. Presence and absence of follicle-stimulating hormone receptor mutations provide some insights into spontaneous ovarian hyperstimulation syndrome physiopathology. J Clin Endocrinol Metab 2006; 91:555-62.

Doherty E, Pakarinen P, Tiitinen A et al. A Novel mutation in the FSH receptor inhibiting signal transduction and causing primary ovarian failure. J Clin Endocrinol Metab 2002; 87:1151-5.

Greb RR, Behre HM, Simoni M. Pharmacogenetics in ovarian stimulation – current concepts and future options. Reprod Biomed Online 2005; 11:589-600.

Greb RR, Grieshaber K, Gromoll J et al. A common single nucleotide polymorphism in exon 10 of the human follicle stimulating hormone receptor is a major determinant of length and hormonal dynamics of the menstrual cycle. J Clin Endocrinol Metab 2005; 90:4866-72.

Gromoll J, Simoni M. Follicle-stimulating-hormone receptor and twinning. Lancet 2001; 357:230.

Heubner M, Riemann K, Otterbach F et al. The haplotype of two FSHR polymorphisms in ovarian cancer-a potential role of ethnology in risk modification. Gynecol Oncol 2009; 112:486-9.

Lalioti MD. Impact of follicle stimulating hormone receptor variants in fertility. Curr Opin Obstet Gynecol 2011; 23:158-67.

Loutradis D, Vlismas A, Drakakis P, Antsaklis A. Pharmacogenetics in ovarian stimulation-current concepts. Ann N Y Acad Sci 2008; 1127:10-9.

Perez Mayorga M, Gromoll J, Behre HM, Gassner C, Nieschlag E, Simoni M. Ovarian response to follicle-stimulating hormone (FSH) stimulation depends on the FSH receptor genotype. J Clin Endocrinol Metab 2000; 85:3365-9.

Wunsch A, Sonntag B, Simoni M. Polymorphism of the FSH receptor and ovarian response to FSH. Ann Endocrinol 2007; 68:160-6.

Yang CQ, Chan KY, Ngan HY et al. Single nucleotide polymorphisms of follicle-stimulating hormone receptor are associated with ovarian cancer susceptibility. Carcinogenesis 2006; 27:1502-6.