Gene References

A B C D E F G H I K L M N O P R S T U V W X Z

KCNE1 (potassium voltage-gated channel, Isk-related family, member 1)

Fatini C, Sticchi E, Marcucci R et al. S38G single-nucleotide polymorphism at the KCNE1 locus is associated with heart failure. Heart Rhythm 2010; 7:363-7.

Paulussen AD, Gilissen RA, Armstrong M et al. Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. J Mol Med 2004; 82:182-8.

Pfeufer A, Jalilzadeh S, Perz S et al. Common variants in myocardial ion channel genes modify the QT interval in the general population: results from the KORA study. Circ Res 2005; 96:693-701.

Splawski I, Shen J, Timothy KW et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 2000; 102:1178-85.

Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet 1997; 17:338-40.

Tesson F, Donger C, Denjoy I et al. Exclusion of KCNE1 (IsK) as a candidate gene for Jervell and Lange-Nielsen syndrome. J Mol Cell Cardiol 1996; 28:2051-5.

Thomas G, Killeen MJ, Gurung IS et al. Mechanisms of ventricular arrhythmogenesis in mice following targeted disruption of KCNE1 modelling long QT syndrome 5. J Physiol 2007; 578:99-114.

van Laer L, Carlsson PI, Ottschytsch N et al. The contribution of genes involved in potassium-recycling in the inner ear to noise-induced hearing loss. Hum Mutat 2006; 27:786-95.

KCNE2 (potassium voltage-gated channel, Isk-related family, member 2)

Abbott GW, Sesti F, Splawski I et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 1999; 97:175-87.

Friederich P, Solth A, Schillemeit S, Isbrandt D. Local anaesthetic sensitivities of cloned HERG channels from human heart: comparison with HERG/MiRP1 and HERG/MiRP1 T8A. Br J Anaesth 2004; 92:93-101.

Gouas L, Nicaud V, Chaouch S et al. Confirmation of associations between ion channel gene SNPs and QTc interval duration in healthy subjects. Eur J Hum Genet 2007; 15:974-9.

Roepke TK, King EC, Reyna-Neyra A et al. Kcne2 deletion uncovers its crucial role in thyroid hormone biosynthesis. Nat Med 2009; 15:1186-94.

Sesti F, Abbott GW, Wei J et al. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc Natl Acad Sci USA 2000; 97:10613-8.

Tinel N, Diochot S, Borsotto M, Lazdunski M, Barhanin J. KCNE2 confers background current characteristics to the cardiac KCNQ1 potassium channel. EMBO J 2000; 19:6326-30.

KCNH2 (potassium voltage-gated channel, subfamily H (eag-related), member 2)

Anson BD, Ackerman MJ, Tester DJ et al. Molecular and functional characterization of common polymorphisms in HERG (KCNH2) potassium channels. Am J Physiol Heart Circ Physiol 2004; 286:2434-41.

Bezzina CR, Verkerk AO, Busjahn A et al. A common polymorphism in KCNH2 (HERG) hastens cardiac repolarization. Cardiovasc Res 2003; 59:27-36.

de Bruin ML, van Puijenbroek EP, Bracke M, Hoes AW, Leufkens HG. Pharmacogenetics of drug-induced arrhythmias: a feasibility study using spontaneous adverse drug reactions reporting data. Pharmacoepidemiol Drug Saf 2006; 15:99-105.

Fitzgerald PT, Ackerman MJ. Drug-induced torsades de pointes: the evolving role of pharmacogenetics. Heart Rhythm 2005; 2(2 Suppl):30-7.

Gentile S, Martin N, Scappini E, Williams J, Erxleben C, Armstrong DL. The human ERG1 channel polymorphism, K897T, creates a phosphorylation site that inhibits channel activity. Proc Natl Acad Sci USA 2008; 105:14704-8.

Gouas L, Nicaud V, Chaouch S et al. Confirmation of associations between ion channel gene SNPs and QTc interval duration in healthy subjects. Eur J Hum Genet 2007; 15:974-9.

Kotta CM, Anastasakis A, Gatzoulis K, Papagiannis J, Geleris P, Stefanadis C. Cardiac ion channel gene mutations in Greek long QT syndrome patients. J Appl Genet 2010; 51:515-8.

Marjamaa A, Newton-Cheh C, Porthan K et al. Common candidate gene variants are associated with QT interval duration in the general population. J Intern Med 2009; 265:448-58.

McPate MJ, Duncan RS, Witchel HJ, Hancox JC. Disopyramide is an effective inhibitor of mutant HERG K+ channels involved in variant 1 short QT syndrome. J Mol Cell Cardiol 2006; 41:563-6.

Newton-Cheh C, Guo CY, Larson MG et al. Common genetic variation in KCNH2 is associated with QT interval duration: the Framingham Heart Study. Circulation 2007; 116:1128-36.

Pfeufer A, Jalilzadeh S, Perz S et al. Common variants in myocardial ion channel genes modify the QT interval in the general population: results from the KORA study. Circ Res 2005; 96:693-701.

Ramström C, Chapman H, Viitanen T et al. Regulation of HERG (KCNH2) potassium channel surface expression by diacylglycerol. Cell Mol Life Sci 2010; 67:157-69.

Shimizu W, Moss AJ, Wilde AA et al. Genotype-phenotype aspects of type 2 long QT syndrome. J Am Coll Cardiol 2009; 54:2052-62.

Sinner MF, Pfeufer A, Akyol M et al. The non-synonymous coding IKr-channel variant KCNH2-K897T is associated with atrial fibrillation: results from a systematic candidate gene-based analysis of KCNH2 (HERG). Eur Heart J 2008; 29:907-14.

Subbiah RN, Gollob MH, Gula LJ et al. Torsades de pointes during complete atrioventricular block: Genetic factors and electrocardiogram correlates. Can J Cardiol 2010; 26:208-12.

Sun Z, Milos PM, Thompson JF et al. Role of a KCNH2 polymorphism (R1047 L) in dofetilide-induced Torsades de Pointes. J Mol Cell Cardiol 2004; 37:1031-9.

Wang QS, Wang XF, Chen XD et al. Genetic polymorphism of KCNH2 confers predisposition of acquired atrial fibrillation in Chinese. J Cardiovasc Electrophysiol 2009; 20:1158-62.

Yang P, Kanki H, Drolet B et al. Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation 2002; 105:1943-8.

KCNJ11 (potassium inwardly-rectifying channel, subfamily J, member 11)

Al-Mahdi M, Al Mutair A, Al Balwi M, Hussain K. Successful transfer from insulin to oral sulfonylurea in a 3-year-old girl with a mutation in the KCNJ11 gene. Ann Saudi Med 2010; 30:162-4.

Craig TJ, Shimomura K, Holl RW, Flanagan SE, Ellard S, Ashcroft FM. An in-frame deletion in Kir6. 2 (KCNJ11) causing neonatal diabetes reveals a site of interaction between Kir6. 2 and SUR1. J Clin Endocrinol Metab 2009; 94:2551-7.

Flanagan SE, Clauin S, Bellanné-Chantelot C et al. Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6. 2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat 2009; 30:170-80.

Flechtner I, de Lonlay P, Polak M. Diabetes and hypoglycaemia in young children and mutations in the Kir6. 2 subunit of the potassium channel: therapeutic consequences. Diabetes Metab 2006; 32:569-80.

Florez JC, Burtt N, de Bakker PI et al. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 2004; 53:1360-8.

Gloyn AL, Diatloff-Zito C, Edghill EL et al. KCNJ11 activating mutations are associated with developmental delay, epilepsy and neonatal diabetes syndrome and other neurological features. Eur J Hum Genet 2006; 14:824-30.

Gloyn AL, Hashim Y, Ashcroft SJ et al. Association studies of variants in promoter and coding regions of beta-cell ATP-sensitive K-channel genes SUR1 and Kir6. 2 with Type 2 diabetes mellitus (UKPDS 53). Diabet Med 2001; 18:206-12.

Hamming KS, Soliman D, Matemisz LC et al. Coexpression of the type 2 diabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A alter the ATP and sulfonylurea sensitivities of the ATP-sensitive K(+) channel. Diabetes 2009; 58:2419-24.

Hansen T, Echwald SM, Hansen L et al. Decreased tolbutamide-stimulated insulin secretion in healthy subjects with sequence variants in the high-affinity sulfonylurea receptor gene. Diabetes 1998; 47:598-605.

James C, Kapoor RR, Ismail D, Hussain K. The genetic basis of congenital hyperinsulinism. J Med Genet 2009; 46:289-99.

Kane GC, Behfar A, Dyer RB et al. KCNJ11 gene knockout of the Kir6. 2 KATP channel causes maladaptive remodeling and heart failure in hypertension. Hum Mol Genet 2006; 15:2285-97.

Klupa T, Skupien J, Mirkiewicz-Sieradzka B et al. Efficacy and safety of sulfonylurea use in permanent neonatal diabetes due to KCNJ11 gene mutations: 34-month median follow-up. Diabetes Technol Ther 2010; 12:387-91.

Laukkanen O, Pihlajamäki J, Lindström J et al. Polymorphisms of the SUR1 (ABCC8) and Kir6. 2 (KCNJ11) genes predict the conversion from impaired glucose tolerance to type 2 diabetes. The Finnish Diabetes Prevention Study. J Clin Endocrinol Metab 2004; 89:6286-90.

Lin YW, MacMullen C, Ganguly A, Stanley CA, Shyng SL. A novel KCNJ11 mutation associated with congenital hyperinsulinism reduces the intrinsic open probability of beta-cell ATP-sensitive potassium channels. J Biol Chem 2006; 281:3006-12.

Mohamadi A, Clark LM, Lipkin PH, Mahone EM, Wodka EL, Plotnick LP. Medical and developmental impact of transition from subcutaneous insulin to oral glyburide in a 15-yr-old boy with neonatal diabetes mellitus and intermediate DEND syndrome: extending the age of KCNJ11 mutation testing in neonatal DM. Pediatric Diabetes 2010; 11:203-7

Nelson TJ, Martinez-Fernandez A, Terzic A. KCNJ11 knockout morula re-engineered by stem cell diploid aggregation. Philos Trans R Soc Lond B Biol Sci 2009; 364:269-76.

Neuman RJ, Wasson J, Atzmon G et al. Gene-gene interactions lead to higher risk for development of type 2 diabetes in an Ashkenazi Jewish population. PLoS One 2010. doi:10. 1371/journal. pone. 0009903

Nielsen EM, Hansen L, Carstensen B et al. The E23K variant of Kir6. 2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes 2003; 52:573-7.

Pearson ER. Pharmacogenetics and future strategies in treating hyperglycaemia in diabetes. Front Biosci 2009; 14:4348-62.

Ruchat SM, Elks CE, Loos RJ et al. Evidence of Interaction between Type 2 Diabetes Susceptibility Genes and Dietary Fat Intake for Adiposity and Glucose Homeostasis-Related Phenotypes. J Nutrigenet Nutrigenomics 2010; 2:225-234.

Sagen JV, Raeder H, Hathout E et al. Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6. 2: patient characteristics and initial response to sulfonylurea therapy. Diabetes 2004; 53:2713-8.

Sakura H, Wat N, Horton V, Millns H, Turner RC, Ashcroft FM. Sequence variations in the human Kir6. 2 gene, a subunit of the beta-cell ATP-sensitive K-channel: no association with NIDDM in while Caucasian subjects or evidence of abnormal function when expressed in vitro. Diabetologia 1996; 39:1233-6.

Sesti G, Laratta E, Cardellini M et al. The E23K variant of KCNJ11 encoding the pancreatic beta-cell adenosine 5’-triphosphate-sensitive potassium channel subunit Kir6. 2 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. J Clin Endocrinol Metab 2006; 91:2334-9.

Slingerland AS, Bruining GJ. From gene to disease; neonatal diabetes mellitus and the KCNJ11 gene. Ned Tijdschr Geneeskd 2005; 149:2732-6.

Tschritter O, Stumvoll M, Machicao F et al. The prevalent Glu23Lys polymorphism in the potassium inward rectifier 6. 2 (KIR6. 2) gene is associated with impaired glucagon suppression in response to hyperglycemia. Diabetes 2002; 51:2854-60.

Xu H, Murray M, McLachlan AJ. Influence of genetic polymorphisms on the pharmacokinetics and pharmaco-dynamics of sulfonylurea drugs. Curr Drug Metab 2009; 10:643-58.

Yu M, Xu XJ, Yin JY et al. KCNJ11 Lys23Glu and TCF7L2 rs290487(C/T) polymorphisms affect therapeutic efficacy of repaglinide in Chinese patients with type 2 diabetes. Clin Pharmacol Ther 2010; 87:330-5.

KCNQ1 (potassium voltage-gated channel, KQT-like subfamily, member 1)

Been LF, Ralhan S, Wander GS et al. Variants in KCNQ1 increase type II diabetes susceptibility in South Asians: A study of 3,310 subjects from India and the US. BMC Med Genet 2011; 12:18.

Crotti L, Taravelli E, Girardengo G, Schwartz PJ. Congenital Short QT Syndrome. Indian Pacing Electrophysiol J 2010; 10:86-95.

Das S, Makino S, Melman YF et al. Mutation in the S3 segment of KCNQ1 results in familial lone atrial fibrillation. Heart Rhythm 2009; 6:1146-53.

de Bruin ML, van Puijenbroek EP, Bracke M, Hoes AW, Leufkens HG. Pharmacogenetics of drug-induced arrhythmias: a feasibility study using spontaneous adverse drug reactions reporting data. Pharmacoepidemiol Drug Saf 2006; 15:99-105.

Gouas L, Nicaud V, Chaouch S et al. Confirmation of associations between ion channel gene SNPs and QTc interval duration in healthy subjects. Eur J Hum Genet 2007; 15:974-9.

Iturralde-Torres P, Medeiros-Domingo A. Genetic in long QT syndromes. Arch Cardiol Mex 2009; 79 Suppl 2:26-30.

Napolitano C, Schwartz PJ, Brown AM et al. Evidence for a cardiac ion channel mutation underlying drug-induced QT prolongation and life-threatening arrhythmias. Cardiovasc Electrophysiol 2000; 11:691-6.

Nishio H, Kuwahara M, Tsubone H et al. Identification of an ethnic-specific variant (V207M) of the KCNQ1 cardiac potassium channel gene in sudden unexplained death and implications from a knock-in mouse model. Int J Legal Med 2009; 123:253-7.

Ohshige T, Tanaka Y, Araki S et al. A single nucleotide polymorphism in KCNQ1 is associated with susceptibility to diabetic nephropathy in japanese subjects with type 2 diabetes. Diabetes Care 2010; 33:842-6.

Ozawa T, Ito M, Tamaki S et al. Gender and age effects on ventricular repolarization abnormality in Japanese general carriers of a G643S common single nucleotide polymorphism for the KCNQ1 gene. Circ J 2006; 70:645-50.

Pfeufer A, Jalilzadeh S, Perz S et al. Common variants in myocardial ion channel genes modify the QT interval in the general population: results from the KORA study. Circ Res 2005; 96:693-701.

Rivas A, Francis HW. Inner ear abnormalities in a Kcnq1 (Kvlqt1) knockout mouse: a model of Jervell and Lange-Nielsen syndrome. Otol Neurotol 2005; 26:415-24.

Shin HD, Park BL, Shin HJ et al. Association of KCNQ1 polymorphisms with the gestational diabetes mellitus in Korean women. J Clin Endocrinol Metab 2010; 95:445-9.

Splawski I, Shen J, Timothy KW et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 2000; 102:1178-85.

Unoki H, Takahashi A, Kawaguchi T et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet 2008; 40:1098-102.

Yasuda K, Miyake K, Horikawa Y et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 2008; 40:1092-7.

Yu W, Hu C, Zhang R et al. Effects of KCNQ1 polymorphisms on the therapeutic efficacy of oral antidiabetic drugs in Chinese patients with type 2 Diabetes. Clin Pharmacol Ther 2011; 89:437-42.

KDR (kinase insert domain receptor (a type III receptor tyrosine kinase))

Ding L, Getz G, Wheeler DA et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008; 455:1069-75.

Pander J, Gelderblom H, Guchelaar HJ. Pharmacogenetics of EGFR and VEGF inhibition. Drug Discov Today 2007; 12:1054-60.

Pasqualetti G, Danesi R, del Tacca M, Bocci G. Vascular endothelial growth factor pharmacogenetics: a new perspective for anti-angiogenic therapy. Pharmacogenomics 2007; 8:49-66.

KIT (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog)

Akin C, Metcalfe DD. The biology of Kit in disease and the application of pharmacogenetics. J Allergy Clin Immunol 2004; 114:13-9.

Battochio A, Mohammed S, Winthrop D et al. Detection of c-KIT and PDGFRA gene mutations in gastrointestinal stromal tumors: comparison of DHPLC and DNA sequencing methods using a single population-based cohort. Am J Clin Pathol 2010; 133:149-55.

Gajiwala KS, Wu JC, Christensen J et al. KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients. Proc Natl Acad Sci USA 2009; 106:1542-7.

Guo T, Hajdu M, Agaram NP et al. Mechanisms of sunitinib resistance in gastrointestinal stromal tumors harboring KITAY502-3ins mutation: an in vitro mutagenesis screen for drug resistance. Clin Cancer Res 2009; 15:6862-70.

Handolias D, Hamilton AL, Salemi R et al. Clinical responses observed with imatinib or sorafenib in melanoma patients expressing mutations in KIT. Br J Cancer 2010; 102:1219-23.

Heinrich MC, Maki RG, Corless CL et al. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol 2008; 26:5352-9.

Hirota S, Isozaki K, Moriyama Y et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998; 279:577-80.

Kurtz JE, Asmane I, Voegeli AC et al. A V530I Mutation in c-KIT Exon 10 Is Associated to Imatinib Response in Extraabdominal Aggressive Fibromatosis. Sarcoma 2010; 2010:458156.

Malaise M, Steinbach D, Corbacioglu S. Clinical implications of c-Kit mutations in acute myelogenous leukemia. Curr Hematol Malig Rep 2009; 4:77-82.

Negri T, Pavan GM, Virdis E et al. T670X KIT mutations in gastrointestinal stromal tumors: making sense of missense. J Natl Cancer Inst 2009; 101:194-204.

Terheyden P, Houben R, Pajouh P, Thorns C, Zillikens D, Becker JC. Response to imatinib mesylate depends on the presence of the V559A-mutated KIT oncogene. J Invest Dermatol 2010; 130:314-6.

Vila L, Liu H, Al-Quran SZ, Coco DP, Dong HJ, Liu C. Identification of c-kit gene mutations in primary adenoid cystic carcinoma of the salivary gland. Mod Pathol 2009; 22:1296-302.

Woodman SE, Trent JC, Stemke-Hale K et al. Activity of dasatinib against L576P KIT mutant melanoma: molecular, cellular, and clinical correlates. Mol Cancer Ther 2009; 8:2079-85.

Zhou JS, Xing W, Friend DS, Austen KF, Katz HR. Mast cell deficiency in Kit(W-sh) mice does not impair antibody-mediated arthritis. J Exp Med 2007; 204:2797-802.

KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog)

Bourdeaut F, Hérault A, Gentien D et al. Mosaicism for oncogenic G12D KRAS mutation associated with epidermal nevus, polycystic kidneys and rhabdomyosarcoma. J Med Genet 2010; 47:859-62.

Carta C, Pantaleoni F, Bocchinfuso G et al. Germline missense mutations affecting KRAS Isoform B are associated with a severe Noonan syndrome phenotype. Am J Hum Genet 2006; 79:129-35.

Cejas P, López-Gómez M, Aguayo C et al. KRAS mutations in primary colorectal cancer tumors and related metastases: a potential role in prediction of lung metastasis. PLoS One 2009. doi:10. 1371/journal. pone. 0008199.

de Gregorio L, Manenti G, Incarbone M et al. Prognostic value of loss of heterozygosity and KRAS2 mutations in lung adenocarcinoma. Int J Cancer 1998; 79:269-72.

Di Fiore F, Blanchard F, Charbonnier F et al. Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by Cetuximab plus chemotherapy. Br J Cancer 2007; 96:1166-9.

Di Fiore F, Michel P. Prognostic role of KRAS mutation in colorectal cancer. Bull Cancer 2009; 96 Suppl:23-30.

Dobrzycka B, Terlikowski SJ, Kowalczuk O, Niklińska W, Chyczewski L, Kulikowski M. Mutations in the KRAS gene in ovarian tumors. Folia Histochem Cytobiol 2009; 47:221-4.

García-Martín E, Ayuso P, Martínez C, Blanca M, Agúndez JA. Histamine pharmacogenomics. Pharmacogenomics 2009; 10:867-83.

Habbe N, Shi G, Meguid RA et al. Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proc Natl Acad Sci USA 2008; 105:18913-8.

Laurent-Puig P, Lièvre A, Ducreux M, Loriot MA. The biological point of view on pharmacogenetics of anticancer agents in colorectal cancer. Bull Cancer 2008; 95:935-42.

Laurent-Puig P, Zucman-Rossi J. Genetics of hepatocellular tumors. Oncogene 2006; 25:3778-86.

Lièvre A, Bachet JB, Le Corre D et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 2006; 66:3992-5.

Luo B, Cheung HW, Subramanian A et al. Highly parallel identification of essential genes in cancer cells. Proc Natl Acad Sci USA 2008; 105:20380-5.

Marchetti A, Milella M, Felicioni L et al. Clinical implications of KRAS mutations in lung cancer patients treated with tyrosine kinase inhibitors: an important role for mutations in minor clones. Neoplasia 2009; 11:1084-92.

Pao W, Wang TY, Riely GJ et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2005. doi:10. 1371/journal. pmed. 0020017.

Park IH, Kim JY, Jung JI, Han JY. Lovastatin overcomes gefitinib resistance in human non-small cell lung cancer cells with K-Ras mutations. Invest New Drugs 2010; 28:791-9.

Shen Y, Lu Y, Yin X, Zhu G, Zhu J. KRAS and BRAF mutations in prostate carcinomas of Chinese patients. Cancer Genet Cytogenet 2010; 198:35-9.

Smith G, Bounds R, Wolf H, Steele RJ, Carey FA, Wolf CR. Activating K-Ras mutations outwith ‘hotspot’ codons in sporadic colorectal tumours – implications for personalised cancer medicine. Br J Cancer 2010; 102:693-703.

Suda K, Tomizawa K, Mitsudomi T. Biological and clinical significance of KRAS mutations in lung cancer: an oncogenic driver that contrasts with EGFR mutation. Cancer Metastasis Rev 2010; 29:49-60.

Tabernero J, Cervantes A, Rivera F et al. Pharmacogenomic and pharmacoproteomic studies of cetuximab in metastatic colorectal cancer: biomarker analysis of a phase I dose-escalation study. J Clin Oncol 2010; 28:1181-9.

To MD, Wong CE, Karnezis AN, del Rosario R, di Lauro R, Balmain A. Kras regulatory elements and exon 4A determine mutation specificity in lung cancer. Nat Genet 2008; 40:1240-4.

Trobridge P, Knoblaugh S, Washington MK et al. TGF-beta receptor inactivation and mutant Kras induce intestinal neoplasms in mice via a beta-catenin-independent pathway. Gastroenterology 2009; 136:1680-8.

Tsujioka H, Hachisuga T, Fukuoka M et al. Monitoring of endometrial K-ras mutation in tamoxifen-treated patients with breast cancer. Int J Gynecol Cancer 2009; 19:1052-6.

Wang HL, Lopategui J, Amin MB, Patterson SD. KRAS mutation testing in human cancers: The pathologist’s role in the era of personalized medicine. Adv Anat Pathol 2010; 17:23-32.

Yen LC, Uen YH, Wu DC et al. Activating KRAS mutations and overexpression of epidermal growth factor receptor as independent predictors in metastatic colorectal cancer patients treated with cetuximab. Ann Surg 2010; 251:254-60.

A B C D E F G H I K L M N O P R S T U V W X Z