Gene References

A B C D E F G H I K L M N O P R S T U V W X Z

NAT2 (N-acetyltransferase 2 (arylamine N-acetyltransferase))

Bell DA, Taylor JA, Butler MA et al. Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) reveals a new slow-acetylator allele common in African-Americans. Carcinogenesis 1993; 14:1689-92.

Bolt HM, Selinski S, Dannappel D, Blaszkewicz M, Golka K. Re-investigation of the concordance of human NAT2 phenotypes and genotypes. Arch Toxicol 2005; 79:196-200.

Cao W, Strnatka D, McQueen CA, Hunter RJ, Erickson RP. N-acetyltransferase 2 activity and folate levels. Life Sci 2010; 86:103-6.

Cascorbi I, Brockmöller J, Bauer S, Reum T, Roots I. NAT2*12A (803A→G) codes for rapid arylamine n-acetylation in humans. Pharmacogenetics 1996; 6:257-9.

Cascorbi I, Drakoulis N, Brockmöller J, Maurer A, Sperling K, Roots I. Arylamine N-acetyltransferase (NAT2) mutations and their allelic linkage in unrelated Caucasian individuals: correlation with phenotypic activity. Am J Hum Genet 1995; 57:581-92.

Chan DKY, Lam MKP, Wong R, Hung WT, Wilcken DEL. Strong association between N-acetyltransferase 2 genotype and PD in Hong Kong Chinese. Neurology 2003; 60:1002-5.

Demokan S, Suoglu Y, Gözeler M, Demir D, Dalay N. N-acetyltransferase 1 and 2 gene sequence variants and risk of head and neck cancer. Mol Biol Rep 2010; 37:3217-26.

Erickson RP, Cao W, Acuña DK et al. Confirmation of using transgenics and knockouts. Mol Reprod Dev 2008; 75:1071-6.

Gates MA, Tworoger SS, Terry KL et al. Talc use, variants of the GSTM1, GSTT1, and NAT2 genes, and risk of epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 2008; 17:2436-44.

Grant DM, Goodfellow GH, Sugamori K, Durette K. Pharmacogenetics of the human arylamine N-acetyltransferases. Pharmacology 2000; 61:204-11.

Hein DW. Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutat Res 2002; 506-507:65-77.

Hein DW, Boukouvala S, Grant DM, Minchin RF, Sim E. Changes in consensus arylamine N-acetyltransferase gene nomenclature. Pharmacogenet Genomics 2008; 18:367-8.

Hein DW, Doll MA, Fretland AJ et al. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev 2000; 9:29-42.

Hermann R, Borlak J, Munzel U et al. The role of Gilbert’s syndrome and frequent NAT2 slow acetylation polymorphisms in the pharmacokinetics of retigabine. Pharmacogenomics J 2006; 6:211-9.

Jorge-Nebert LF, Eichelbaum M, Griese EU, Inaba T, Arias TD. Analysis of six SNPs of NAT2 in Ngawbe and Embera Amerindians of Panama and determination of the Embera acetylation phenotype using caffeine. Pharmacogenetics 2002; 12:39-48.

Lin HJ, Han CY, Lin BK, Hardy S. Ethnic distribution of slow acetylator mutations in the polymorphic N-acetyltransferase (NAT2) gene. Pharmacogenetics 1994; 4:125-34.

Ohsako S, Deguchi T. Cloning and expression of cDNAs for polymorphic and monomorphic arylamine N-acetyltransferases from human liver. J Biol Chem 1990; 265:4630-4.

Okumura K, Kita T, Chikazawa S, Komada F, Iwakawa S, Tanigawara Y. Genotyping of N-acetylation polymorphism and correlation with procainamide metabolism. Clin Pharmacol Ther 1997; 61:509-17.

Ragunathan N, Dairou J, Sanfins E et al. Cadmium alters the biotransformation of carcinogenic aromatic amines by arylamine N-acetyltransferase xenobiotic-metabolizing enzymes: molecular, cellular, and in vivo studies. Environ Health Perspect 2010; 118:1685-91.

Schaaf HS, Parkin DP, Seifart HI et al. Isoniazid pharmacokinetics in children treated for respiratory tuberculosis. Arch Dis Child 2005; 90:614-8.

Taniguchi A, Urano W, Tanaka E et al. Validation of the associations between single nucleotide polymorphisms or haplotypes and responses to disease-modifying antirheumatic drugs in patients with rheumatoid arthritis: a proposal for prospective pharmacogenomic study in clinical practice. Pharmacogenet Genomics 2007; 17:383-90.

van Eyken E, van Camp G, Fransen E et al. Contribution of the N-acetyltransferase 2 polymorphism NAT2*6A to age-related hearing impairment. J Med Genet 2007; 44:570-8.

Vatsis KP, Martell KJ, Weber WW. Diverse point mutations in the human gene for polymorphic N-acetyltransferase. Proc Natl Acad Sci USA 1991; 88:6333-7.

Wakefield L, Cornish V, Long H et al. Mouse arylamine N-acetyltransferase 2 (Nat2) expression during embryogenesis: a potential marker for the developing neuroendocrine system. Biomarkers 2008; 13:106-18.

Zang Y, Doll MA, Zhao S, States JC, Hein DW. Functional characterization of single-nucleotide polymorphisms and haplotypes of human N-acetyltransferase 2. Carcinogenesis 2007; 28:1665-71.

Zang Y, Zhao S, Doll MA, States JC, Hein DW. The T341C (Ile114Thr) polymorphism of N-acetyltransferase 2 yields slow acetylator phenotype by enhanced protein degradation. Pharmacogenetics 2004; 14:717-23.

NDUFB4 (NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 4, 15kDa)

Edvardsen H, Brunsvig PF, Solvang H et al. SNPs in genes coding for ROS metabolism and signalling in association with docetaxel clearance. Pharmacogenomics J 2010; 10:513-23.

NEU2 (sialidase 2 (cytosolic sialidase))

Li CY, Yu Q, Ye ZQ et al. A nonsynonymous SNP in human cytosolic sialidase in a small Asian population results in reduced enzyme activity: potential link with severe adverse reactions to oseltamivir. Cell Res 2007; 17:357-62.

Liang F, Seyrantepe V, Landry K et al. Monocyte differentiation up-regulates the expression of the lysosomal sialidase, Neu1, and triggers its targeting to the plasma membrane via major histocompatibility complex class II-positive compartments. J Biol Chem 2006; 281:27526-38.

Stamatos NM, Liang F, Nan X et al. Differential expression of endogenous sialidases of human monocytes during cellular differentiation into macrophages. FEBS J 2005; 272:2545-56.

Tringali C, Lupo B, Anastasia L et al. Expression of sialidase Neu2 in leukemic K562 cells induces apoptosis by impairing Bcr-Abl/Src kinases signaling. J Biol Chem 2007; 282:14364-72.

NNMT (nicotinamide N-methyltransferase)

Giusti B, Saracini C, Bolli P et al. Genetic analysis of 56 polymorphisms in 17 genes involved in methionine metabolism in patients with abdominal aortic aneurysm. J Med Genet 2008; 45:721-30.

Souto JC, Blanco-Vaca F, Soria JM et al. A genomewide exploration suggests a new candidate gene at chromosome 11q23 as the major determinant of plasma homocysteine levels: results from the GAIT project. Am J Hum Genet 2005; 76:925-33.

van Driel LM, Smedts HP, Helbing WA et al. Eight-fold increased risk for congenital heart defects in children carrying the nicotinamide N-methyltransferase polymorphism and exposed to medicines and low nicotinamide. Eur Heart J 2008; 29:1424-31.

Yan L, Otterness DM, Weinshilboum RM. Human nicotinamide N-methyltransferase pharmacogenetics: gene sequence analysis and promoter characterization. Pharmacogenetics 1999; 9:307-16.

NOS3 (nitric oxide synthase 3 (endothelial cell))

Ahsan A, Norboo T, Baig MA, Pasha MAQ. Simultaneous selection of the wild-type genotypes of the G894T and 4B/4A polymorphisms of NOS3 associate with high-altitude adaptation. Ann Hum Genet 2005; 69:260-67.

Akhter MS, Biswas A, Ranjan R, Sharma A, Kumar S, Saxena R. The nitric oxide synthase 3 gene polymorphisms and their association with deep vein thrombosis in Asian Indian patients. Clin Chim Acta 2010; 411:649-52.

Akomolafe A, Lunetta KL, Erlich PM et al. Genetic association between endothelial nitric oxide synthase and Alzheimer disease. Clin Genet 2006; 70:49-56.

Azizi Z, Noroozian M, Kaini-Moghaddam Z, Majlessi N. Association between NOS3 gene G894T polymorphism and late-onset Alzheimer disease in a sample from Iran. Alzheimer Dis Assoc Disord 2010; 24:204-8.

Bambha K, Kim WR, Rosen CB et al. Endothelial nitric oxide synthase gene variation associated with chronic kidney disease after liver transplant. Mayo Clin Proc 2010; 85:814-20.

Berger K, Stogbauer F, Stoll M et al. The Glu298Asp polymorphism in the nitric oxide synthase 3 gene is associated with the risk of ischemic stroke in two large independent case-control studies. Hum Genet 2007; 121:169-78.

Casas JP, Bautista LE, Humphries SE, Hingorani AD. Endothelial nitric oxide synthase genotype and ischemic heart disease: meta-analysis of 26 studies involving 23028 subjects. Circulation 2004; 109:1359-65.

Dahiyat M, Cumming A, Harrington C et al. Association between Alzheimer’s disease and the NOS3 gene. Ann Neurol 1999; 46:664-7.

Ferguson JF, Phillips CM, McMonagle J et al. NOS3 gene polymorphisms are associated with risk markers of cardiovascular disease, and interact with omega-3 polyunsaturated fatty acids. Atherosclerosis 2010; 211:539-44.

Higuchi S, Ohta S, Matsushita S et al. NOS3 polymorphism not associated with Alzheimer’s disease in Japanese. Ann Neurol 2000; 48:685.

Hillermann R, Carelse K, Gebhardt GS. The Glu29-to-Asp variant of the endothelial nitric oxide synthase gene is associated with an increased risk for abruptio placentae in pre-eclampsia. J Hum Genet 2005; 50:415-9.

Hingorani AD, Liang CF, Fatibene J et al. A common variant of the endothelial nitric oxide synthase (Glu298→Asp) is a major risk factor for coronary artery disease in the UK. Circulation 1999; 100:1515-20.

Jáchymová M, Horký K, Bultas J et al. Association of the Glu298Asp polymorphism in the endothelial nitric oxide synthase gene with essential hypertension resistant to conventional therapy. Biochem Biophys Res Commun 2001; 284:426-30.

Ji Y, Ferracci G, Warley A et al. Beta-actin regulates platelet nitric oxide synthase 3 activity through interaction with heat shock protein 90. Proc Nat Acad Sci USA 2007; 104:8839-44.

Kobashi G, Yamada H, Ohta K, Kato E, Ebina Y, Fujimoto S. Endothelial nitric oxide synthase gene (NOS3) variant and hypertension in pregnancy. Am J Med Genet 2001; 103:241-4.

Lim KH, Ancrile BB, Kashatus DF, Counter CM. Tumour maintenance is mediated by eNOS. Nature 2008; 452:646-49.

Liyou N, Simons L, Friedlander Y et al. Coronary artery disease is not associated with the E298→D variant of the constitutive, endothelial nitric oxide synthase gene. Clin Genet 1998; 54:528-9.

McKnight AJ, Patterson CC, Sandholm N et al. Genetic polymorphisms in nitric oxide synthase 3 gene and implications for kidney disease: a meta-analysis. Am J Nephrol 2010; 32:476-81.

Nakayama M, Yasue H, Yoshimura M et al. T-786→C mutation in the 5’-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation 1999; 99:2864-70.

Nakayama M, Yoshimura M, Sakamoto T et al. Synergistic interaction of T-786→C polymorphism in the endothelial nitric oxide synthase gene and smoking for an enhanced risk for coronary spasm. Pharmacogenetics 2003; 13:683-8.

Neilan TG, Blake SL, Ichinose F et al. Disruption of nitric oxide synthase 3 protects against the cardiac injury, dysfunction, and mortality induced by doxorubicin. Circulation 2007; 116:506-14.

Nishida T, Yu JD, Minamishima S et al. Protective effects of nitric oxide synthase 3 and soluble guanylate cyclase on the outcome of cardiac arrest and cardiopulmonary resuscitation in mice. Crit Care Med 2009; 37:256-62.

Nisoli E, Tonello C, Cardile A et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 2005; 310:314-17.

Philip I, Plantefeve G, Vuillaumier-Barrot S et al. G894T polymorphism in the endothelial nitric oxide synthase gene is associated with an enhanced vascular responsiveness to phenylephrine. Circulation 1999; 99:3096-8.

Safarinejad MR, Shafiei N, Safarinejad S. The role of endothelial nitric oxide synthase (eNOS) T-786C, G894T, and 4a/b gene polymorphisms in the risk of idiopathic male infertility. Mol Reprod Dev 2010; 77:720-7.

Salimi S, Firoozrai M, Zand H et al. Endothelial nitric oxide synthase gene Glu298Asp polymorphism in patients with coronary artery disease. Ann Saudi Med 2010; 30:33-7.

Sandrim VC, Palei AC, Luizon MR, Izidoro-Toledo TC, Cavalli RC, Tanus-Santos JE. eNOS haplotypes affect the responsiveness to antihypertensive therapy in preeclampsia but not in gestational hypertension. Pharmacogenomics J 2010; 10:40-5.

Sinici I, Güven EO, Serefoğlu E, Hayran M. T-786C polymorphism in promoter of eNOS gene as genetic risk factor in patients with erectile dysfunction in Turkish population. Urology 2010; 75:955-60.

Sinici I, Kalyoncu U, Karahan S, Kiraz S, Atalar E. Endothelial nitric oxide gene polymorphism and risk of systemic sclerosis: predisposition effect of T-786C promoter and protective effect of 27 bp repeats in Intron 4. Clin Exp Rheumatol 2010; 28:169-75.

Sofowora G, Dishy V, Xie HG et al. In-vivo effects of Glu298Asp endothelial nitric oxide synthase polymorphism. Pharmacogenetics 2001; 11:809-14.

Tanus-Santos JE, Desai M, Deak LR et al. Effects of endothelial nitric oxide synthase gene polymorphisms on platelet function, nitric oxide release, and interactions with estradiol. Pharmacogenetics 2002; 12:407-13.

Wang P, Koehle MS, Rupert JL. Genotype at the missense G894T polymorphism (Glu298Asp) in the NOS3 gene is associated with susceptibility to acute mountain sickness. High Alt Med Biol 2009; 10:261-7.

Yanamandra K, Napper D, Pramanik A, Bocchini JA Jr, Dhanireddy R. Endothelial nitric oxide synthase genotypes in the etiology of retinopathy of prematurity in premature infants. Ophthalmic Genet 2010; 31:173-7.

Yao L, Fang F, Zhong Y, Yu L. The association between two polymorphisms of eNOS and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 2010; 124:223-7.

Yoshimura M, Yasue H, Nakayama M et al. A missense Glu298Asp variant in the endothelial nitric oxide synthase gene is associated with coronary spasm in the Japanese. Hum Genet 1998; 103:65-9.

Yoshimura T, Yoshimura M, Tabata A, Yasue H, Okamura H. The missense Glu298Asp variant of the endothelial nitric oxide synthase gene is strongly associated with placental abruption. Hum Genet 2001; 108:181-3.

NOTCH3 (notch 3)

Anastasi E, Campese AF, Bellavia D et al. Expression of activated Notch3 in transgenic mice enhances generation of T regulatory cells and protects against experimental autoimmune diabetes. J Immunol 2003; 171:4504-11.

Belin de Chantemèle EJ, Retailleau K, Pinaud F et al. Notch3 is a major regulator of vascular tone in cerebral and tail resistance arteries. Arterioscler Thromb Vasc Biol 2008; 28:2216-24.

Hu C, Diévart A, Lupien M, Calvo E, Tremblay G, Jolicoeur P. Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol 2006; 168:973-90.

Joutel A, Andreux F, Gaulis S et al. The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest 2000; 105:597-605.

Joutel A, Corpechot C, Ducros A et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 1996; 383:707-10.

Kang JH, Lee da H, Seo H et al. Regulation of functional phenotypes of cord blood derived eosinophils by gamma-secretase inhibitor. Am J Respir Cell Mol Biol 2007; 37:571-7.

Li X, Zhang X, Leathers R et al. Notch3 signaling promotes the development of pulmonary arterial hypertension. Nat Med 2009; 15:1289-97.

Ma EY, Rubel EW, Raible DW. Notch signaling regulates the extent of hair cell regeneration in the zebrafish lateral line. J Neurosci 2008; 28:2261-73.

Mumm JS, Schroeter EH, Saxena MT et al. A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell 2000; 5:197-206.

Takahashi K, Adachi K, Kunimoto S, Wakita H, Takeda K, Watanabe A. Potent inhibitors of amyloid β fibrillization, 4,5-dianilinophthalimide and staurosporine aglycone, enhance degradation of preformed aggregates of mutant Notch3. Biochem Biophys Res Commun 2010; 402:54-8.

NOX1 (NADPH oxidase 1)

Jackman KA, Miller AA, Drummond GR, Sobey CG. Importance of NOX1 for angiotensin II-induced cerebrovascular superoxide production and cortical infarct volume following ischemic stroke. Brain Res 2009; 1286:215-20.

Kim HJ, Lee JH, Kim SJ et al. Roles of NADPH oxidases in Cisplatin-induced reactive oxygen species generation and ototoxicity. J Neurosci 2010; 30:3933-46.

Nakamura T, Yamamoto E, Kataoka K et al. Beneficial effects of pioglitazone on hypertensive cardiovascular injury are enhanced by combination with candesartan. Hypertension 2008; 51:296-301.

Niu XL, Madamanchi NR, Vendrov AE et al. Nox activator 1: a potential target for modulation of vascular reactive oxygen species in atherosclerotic arteries. Circulation 2010; 121:549-59.

NPC1 (Niemann-Pick disease, type C1)

Blom TS, Linder MD, Snow K et al. Defective endocytic trafficking of NPC1 and NPC2 underlying infantile Niemann-Pick type C disease. Hum Mol Genet 2003; 12:257-72.

Carstea ED, Morris JA, Coleman KG et al. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 1997; 277:228-31.

Fancello T, Dardis A, Rosano C et al. Molecular analysis of NPC1 and NPC2 gene in 34 Niemann-Pick C Italian patients: identification and structural modeling of novel mutations. Neurogenetics 2009; 10:229-39.

Greer WL, Riddell DC, Gillan TL et al. The Nova Scotia (type D) form of Niemann-Pick disease is caused by a G3097→T transversion in NPC1. Am J Hum Genet 1998; 63:52-4.

Hofker M, Wijmenga C. A supersized list of obesity genes. Nat Genet 2009; 41:139-40.

Karten B, Peake KB, Vance JE. Mechanisms and consequences of impaired lipid trafficking in Niemann-Pick type C1-deficient mammalian cells. Biochim Biophys Acta 2009; 179:659-70.

Langmade SJ, Gale SE, Frolov A et al. Pregnane X receptor (PXR) activation: a mechanism for neuroprotection in a mouse model of Niemann-Pick C disease. Proc Nat Acad Sci USA 2006; 103:13807-12.

Ma W, Xu J, Wang Q et al. Interaction of functional NPC1 gene polymorphism with smoking on coronary heart disease. BMC Med Genet 2010; 11:149.

Meyre D, Delplanque J, Chèvre JC et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat Genet 2009; 41:157-9.

Millat G, Marçais C, Rafi MA et al. Niemann-Pick C1 disease: the I1061T substitution is a frequent mutant allele in patients of Western European descent and correlates with a classic juvenile phenotype. Am J Hum Genet 1999; 65:1321-9.

Millat G, Marçais C, Tomasetto C et al. Niemann-Pick C1 disease: correlations between NPC1 mutations, levels of NPC1 protein, and phenotypes emphasize the functional significance of the putative sterol-sensing domain and of the cysteine-rich luminal loop. Am J Hum Genet 2001; 68:1373-85.

Ribeiro I, Marcão A, Amaral O, Sá Miranda MC, Vanier MT, Millat G. Niemann-Pick type C disease: NPC1 mutations associated with severe and mild cellular cholesterol trafficking alterations. Hum Genet 2001; 109:24-32.

Storch J, Xu Z. Niemann-Pick C2 (NPC2) and intracellular cholesterol trafficking. Biochim Biophys Acta 2009; 1791:671-8.

Sun X, Marks DL, Park WD et al. Niemann-Pick C variant detection by altered sphingolipid trafficking and correlation with mutations within a specific domain of NPC1. Am J Hum Genet 2001; 68:1361-72.

Yamamoto T, Nanba E, Ninomiya H et al. NPC1 gene mutations in Japanese patients with Niemann-Pick disease type C. Hum Genet 1999; 105:10-6.

NPPA (natriuretic peptide precursor A)

Hodgson-Zingman DM, Karst ML, Zingman LV et al. Atrial natriuretic peptide frameshift mutation in familial atrial fibrillation. N Engl J Med 2008; 359:158-65.

Lynch AI, Boerwinkle E, Davis BR et al. Pharmacogenetic association of the NPPA T2238C genetic variant with cardiovascular disease outcomes in patients with hypertension. JAMA 2008; 299:296-307.

Mori T, Chen YF, Feng JA, Hayashi T, Oparil S, Perry GJ. Volume overload results in exaggerated cardiac hypertrophy in the atrial natriuretic peptide knockout mouse. Cardiovasc Res 2004; 61:771-9.

Ren X, Xu C, Zhan C et al. Identification of NPPA variants associated with atrial fibrillation in a Chinese GeneID population. Clin Chim Acta 2010; 411:481-5.

NPY (neuropeptide Y)

Domschke K, Dannlowski U, Hohoff C et al. Neuropeptide Y (NPY) gene: Impact on emotional processing and treatment response in anxious depression. Eur Neuropsychopharmacol 2010; 20:301-9.

Hill JW, Levine JE. Abnormal response of the neuropeptide Y-deficient mouse reproductive axis to food deprivation but not lactation. Endocrinology 2003; 144:1780-6.

Kallio J, Pesonen U, Jaakkola U, Karvonen MK, Helenius H, Koulu M. Changes in diurnal sympathoadrenal balance and pituitary hormone secretion in subjects with Leu7Pro polymorphism in the prepro-neuropeptide Y. J Clin Endocrinol Metab 2003; 88:3278-83.

Karvonen MK, Koulu M, Pesonen U et al. Leucine 7 to proline 7 polymorphism in the preproneuropeptide Y is associated with birth weight and serum triglyceride concentration in preschool aged children. J Clin Endocrinol Metab 2000; 85:1455-60.

Karvonen MK, Pesonen U, Koulu M et al. Association of a leucine(7)-to-proline(7) polymorphism in the signal peptide of neuropeptide Y with high serum cholesterol and LDL cholesterol levels. Nat Med 1998; 4:1434-7.

Kauhanen J, Karvonen MK, Pesonen U et al. Neuropeptide Y polymorphism and alcohol consumption in middle-aged men. Am J Med Genet 2000; 93:117-21.

Kim HJ, Harrington ME. Neuropeptide Y-deficient mice show altered circadian response to simulated natural photoperiod. Brain Res 2008; 1246:96-100.

Kim NS, Ko MM, Cha MH, Oh SM, Bang OS. Age and sex dependent genetic effects of neuropeptide Y promoter polymorphism on susceptibility to ischemic stroke in Koreans. Clin Chim Acta 2010; 411:1243-7.

Lappalainen J, Kranzler HR, Malison R et al. A functional neuropeptide Y Leu7Pro polymorphism associated with alcohol dependence in a large population sample from the United States. Arch Gen Psychiatry 2002; 59:825-31.

Niskanen L, Karvonen MK, Valve R et al. Leucine 7 to proline 7 polymorphism in the neuropeptide Y gene is associated with enhanced carotid atherosclerosis in elderly patients with type 2 diabetes and control subjects. J Clin Endocrinol Metab 2000; 85:2266-9.

Pandey SC, Carr LG, Heilig M, Ilveskoski E, Thiele TE. Neuropeptide y and alcoholism: genetic, molecular, and pharmacological evidence. Alcohol Clin Exp Res 2003; 27:149-54.

Pesonen U. NPY L7P polymorphism and metabolic diseases. Regul Pept 2008; 149:51-5.

Reynolds GP, Hill MJ, Kirk SL. The 5-HT2C receptor and antipsychoticinduced weight gain – mechanisms and genetics. J Psychopharmacol 2006; 20(4 Suppl):15-8.

Testa A, Mallamaci F, Macrì R et al. Neuropeptide Y receptor Y2 gene polymorphism interacts with plasma neuropeptide Y levels in predicting left ventricular hypertrophy in dialysis patients. J Hypertens 2010; 28:1745-51.

Uusitupa MI, Karvonen MK, Pesonen U, Koulu M. Neuropeptide Y: a novel link between the neuroendocrine system and cholesterol metabolism. Ann Med 1998; 30:508-10.

Wallerstedt SM, Skrtic S, Eriksson AL, Ohlsson C, Hedner T. Association analysis of the polymorphism T1128C in the signal peptide of neuropeptide Y in a Swedish hypertensive population. J Hypertens 2004; 22:1277-81.

Yu JT, Yu NN, Gao SS et al. Neuropeptide Y polymorphisms and ischemic stroke in Chinese population. Clin Chim Acta 2010; 411:242-5.

Zhou Z, Zhu G, Hariri AR et al. Genetic variation in human NPY expression affects stress response and emotion. Nature 2008; 452:997-1001.

NQO1 (NAD(P)H dehydrogenase, quinone 1)

Asher G, Tsvetkov P, Kahana C, Shaul Y. A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev 2005; 19:316-21.

Benson AM, Hunkeler MJ, Talalay P. Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci USA 1980; 77:5216-20.

Blanco JG, Edick MJ, Hancock ML et al. Genetic polymorphisms in CYP3A5, CYP3A4 and NQO1 in children who developed therapy-related myeloid malignancies. Pharmacogenetics 2002; 12:605-11.

Bolufer P, Barragan E, Collado M, Cervera J, López JA, Sanz MA. Influence of genetic polymorphisms on the risk of developing leukemia and on disease progression. Leuk Res 2006; 30:1471-91.

Cho CG, Lee SK, Nam SY et al. Association of the GSTP1 and NQO1 polymorphisms and head and neck squamous cell carcinoma risk. J Korean Med Sci 2006; 21:1075-9.

Fagerholm R, Hofstetter B, Tommiska J et al. NAD(P)H:quinone oxidoreductase 1 NQO1*2 genotype (P187S) is a strong prognostic and predictive factor in breast cancer. Nat Genet 2008; 40:844-53.

Fong CS, Wu RM, Shieh JC et al. Pesticide exposure on southwestern Taiwanese with MnSOD and NQO1 polymorphisms is associated with increased risk of Parkinson’s disease. Clin Chim Acta 2007; 378:136-41.

Hamajima N, Naito M, Kondo T, Goto Y. Genetic factors involved in the development of Helicobacter pylori-related gastric cancer. Cancer Sci 2006; 97:1129-38.

Hu X, Zhang Z, Ma D et al. TP53, MDM2, NQO1, and susceptibility to cervical cancer. Cancer Epidemiol Biomarkers Prev 2010; 19:755-61.

Iskander K, Jaiswal AK. Quinone oxidoreductases in protection against myelogenous hyperplasia and benzene toxicity. Chem Biol Interact 2005; 153-4:147-57.

Kolesar JM, Pritchard SC, Kerr KM, Kim K, Nicolson MC, McLeod H. Evaluation of NQO1 gene expression and variant allele in human NSCLC tumors and matched normal lung tissue. Int J Oncol 2002; 21:1119-24.

Malik MA, Zargar SA, Mittal B. Role of NQO1 609C>T and NQO2-3423G>A polymorphisms in susceptibility to gastric cancer in Kashmir Valley. DNA Cell Biol 2011; 30:1-7.

Millstein J, Conti DV. Gilliland FD, Gauderman WJ. A testing framework for identifying susceptibility genes in the presence of epistasis. Am J Hum Genet 2006; 78:15-27.

Moran JL, Siegel D, Ross D. A potential mechanism underlying the increased susceptibility of individuals with a polymorphism in NAD(P)H:quinone oxidoreductase 1 (NQO1) to benzene toxicity. Proc Natl Acad Sci USA 1999; 96:8150-5.

Ross D. Functions and distribution of NQO1 in human bone marrow: potential clues to benzene toxicity. Chem Biol Interact 2005; 153-154:137-46.

Rothman N, Smith MT, Hayes RB et al. Benzene poisoning, a risk factor for hematological malignancy, is associated with the NQO1 609C→T mutation and rapid fractional excretion of chlorzoxazone. Cancer Res 1997; 57:2839-42.

Sameer AS, Shah ZA, Syeed N, Rasool R, Afroze D, Siddiqi MA. NAD(P)H:quinone oxidoreductase 1 (NQO1) Pro187Ser polymorphism and colorectal cancer predisposition in the ethnic Kashmiri population. Asian Pac J Cancer Prev 2010; 11:209-13.

Smith MT. Benzene, NQO1, and genetic susceptibility to cancer. Proc Natl Acad Sci USA 1999; 96:7624-6.

Stanulla M, Dynybil C, Bartels DB et al. The NQO1 C609T polymorphism is associated with risk of secondary malignant neoplasms after treatment for childhood acute lymphoblastic leukemia: a matched-pair analysis from the ALL-BFM study group. Haematologica 2007; 92:1581-2.

Traver RD, Horikoshi T, Danenberg KD et al. NAD(P)H:quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity. Cancer Res 1992; 52:797-802.

Traver RD, Siegel D, Beall HD et al. Characterization of a polymorphism in NAD(P)H: quinone oxidoreductase (DT-diaphorase). Br J Cancer 1997; 75:69-75.

Voynow JA, Fischer BM, Zheng S et al. NAD(P)H quinone oxidoreductase 1 is essential for ozone-induced oxidative stress in mice and humans. Am J Respir Cell Mol Biol 2009; 41:107-13.

Wan HY, Chen B, Yang JF, Dong XM. NQ01 gene polymorphism C609T associated with an increased risk for cognitive dysfunction and sporadic Alzheimer’s disease in Chinese. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2005; 27:285-8.

Zhang L, Rothman N, Wang Y et al. Increased aneusomy and long arm deletion of chromosomes 5 and 7 in the lymphocytes of Chinese workers exposed to benzene. Carcinogenesis 1998; 19:1955-61.

NR1I2 (nuclear receptor subfamily 1, group I, member 2)

Dring MM, Goulding CA, Trimble VI et al. The pregnane X receptor locus is associated with susceptibility to inflammatory bowel disease. Gastroenterology 2006; 130:341-8.

Fanta S, Jönsson S, Karlsson MO et al. Long-term changes in cyclosporine pharmacokinetics after renal transplantation in children: evidence for saturable presystemic metabolism and effect of NR1I2 polymorphism. J Clin Pharmacol 2010; 50:581-97.

Hariparsad N, Nallani SC, Sane RS, Buckley DJ, Buckley AR, Desai PB. Induction of CYP3A4 by efavirenz in primary human hepatocytes: comparison with rifampin and phenobarbital. J Clin Pharmacol 2004; 44:1273-81.

Harmsen S, Meijerman I, Febus CL, Maas-Bakker RF, Beijnen JH, Schellens JH. PXR-mediated induction of P-glycoprotein by anticancer drugs in a human colon adenocarcinoma-derived cell line. Cancer Chemother Pharmacol 2010; 66:765-71.

He P, Court MH, Greenblatt DJ, von Moltke LL. Human pregnane X receptor: genetic polymorphisms, alternative mRNA splice variants, and cytochrome P450 3A metabolic activity. J Clin Pharmacol 2006; 46:1356-69.

Hor SY, Lee SC, Wong CI et al. PXR, CAR and HNF4alpha genotypes and their association with pharmacokinetics and pharmacodynamics of docetaxel and doxorubicin in Asian patients. Pharmacogenomics J 2008; 8:139-46.

Lichti-Kaiser K, Staudinger JL. The traditional Chinese herbal remedy tian xian activates pregnane X receptor and induces CYP3A gene expression in hepatocytes. Drug Metab Dispos 2008; 36:1538-45.

Luo G, Cunningham M, Kim S et al. CYP3A4 induction by drugs: correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes. Drug Metab Dispos 2002; 30:795-804.

Oscarson M, Zanger UM, Rifki OF, Klein K, Eichelbaum M, Meyer UA. Transcriptional profiling of genes induced in the livers of patients treated with carbamazepine. Clin Pharmacol Ther 2006; 80:440-56.

Sandanaraj E, Lal S, Selvarajan V et al. PXR pharmacogenetics: association of haplotypes with hepatic CYP3A4 and ABCB1 messenger RNA expression and doxorubicin clearance in Asian breast cancer patients. Clin Cancer Res 2008; 14:7116-26.

Sinz M, Kim S, Zhu Z et al. Evaluation of 170 xenobiotics as transactivators of human pregnane X receptor (hPXR) and correlation to known CYP3A4 drug interactions. Curr Drug Metab 2006; 7:375-88.

Sookoian S, Castaño GO, Burgueño AL, Gianotti TF, Rosselli MS, Pirola CJ. The nuclear receptor PXR gene variants are associated with liver injury in nonalcoholic fatty liver disease. Pharmacogenet Genomics 2010; 20:1-8.

Uno Y, Sakamoto Y, Yoshida K et al. Characterization of six base pair deletion in the putative HNF1-binding site of human PXR promoter. J Hum Genet 2003; 48:594-7.

Wang XD, Li JL, Su QB et al. Impact of the haplotypes of the human pregnane X receptor gene on the basal and St John’s wort-induced activity of cytochrome P450 3A4 enzyme. Br J Clin Pharmacol 2009; 67:255-61.

Xie W, Barwick JL, Downes M et al. Humanized xenobiotic response in mice expressing nuclear receptor SXR. Nature 2000; 406:435-9.

Zhang J, Huang W, Qatanani M, Evans RM, Moore DD. The constitutive androstane receptor and pregnane X receptor function coordinately to prevent bile acid-induced hepatotoxicity. J Biol Chem 2004; 279:49517-22.

Zhang J, Kuehl P, Green ED et al. The human pregnane X receptor: genomic structure and identification and functional characterization of natural allelic variants. Pharmacogenetics 2001; 11:555-72.

NR1I3 (nuclear receptor subfamily 1, group I, member 3)

Lamba JK, Lamba V, Yasuda K et al. Expression of constitutive androstane receptor splice variants in human tissues and their functional consequences. J Pharmacol Exp Ther 2004; 311:811-21.

van Erp NP, Eechoute K, van der Veldt AA et al. Pharmacogenetic pathway analysis for determination of sunitinib-induced toxicity. J Clin Oncol 2009; 27:4406-12.

NR3C1 (nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor))

Ashraf J, Thompson EB. Identification of the activation-labile gene: a single point mutation in the human glucocorticoid receptor presents as two distinct receptor phenotypes. Mol Endocrinol 1993; 7:631-42.

Charmandari E, Kino T, Ichijo T et al. A novel point mutation in helix 11 of the ligand-binding domain of the human glucocorticoid receptor gene causing generalized glucocorticoid resistance. J Clin Endocrinol Metab 2007; 92:3986-90.

Charmandari E, Kino T, Ichijo T, Zachman K, Alatsatianos A, Chrousos GP. Functional characterization of the natural human glucocorticoid receptor (hGR) mutants hGRalphaR477H and hGRalphaG679S associated with generalized glucocorticoid resistance. J Clin Endocrinol Metab 2006; 91:1535-43.

Charmandari E, Raji A, Kino T et al. A novel point mutation in the ligand-binding domain (LBD) of the human glucocorticoid receptor (hGR) causing generalized glucocorticoid resistance: the importance of the C terminus of hGR LBD in conferring transactivational activity. J Clin Endocrinol Metab 2005; 90:3696-705.

Chrousos GP, Renquist D, Brandon D et al. Glucocorticoid hormone resistance during primate evolution: receptor-mediated mechanisms. Proc Nat Acad Sci USA 1982; 79:2036-40.

Desrivières S, Lourdusamy A, Müller C et al. Glucocorticoid receptor (NR3C1) gene polymorphisms and onset of alcohol abuse in adolescents. Addict Biol 2011; 16:510-3.

Finken MJ, Meulenbelt I, Dekker FW et al. The 23K variant of the R23K polymorphism in the glucocorticoid receptor gene protects against postnatal growth failure and insulin resistance after preterm birth. J Clin Endocrinol Metab 2007; 92:4777-82.

Hurley DM, Accili D, Stratakis CA et al. Point mutation causing a single amino acid substitution in the hormone binding domain of the glucocorticoid receptor in familial glucocorticoid resistance. J Clin Invest 1991; 87:680-6.

Karl M, Lamberts SW, Detera-Wadleigh SD et al. Familial glucocorticoid resistance caused by a splice site deletion in the human glucocorticoid receptor gene. J Clin Endocrinol Metab 1993; 76:683-9.

Karl M, Lamberts SW, Koper JW et al. Cushing’s disease preceded by generalized glucocorticoid resistance: clinical consequences of a novel, dominant-negative glucocorticoid receptor mutation. Proc Assoc Am Physicians 1996; 108:296-307.

Koyano S, Saito Y, Sai K et al. Novel genetic polymorphisms in the NR3C1 (glucocorticoid receptor) gene in a Japanese population. Drug Metab Pharmacokinet 2005; 20:79-84.

Kumsta R, Moser D, Streit F, Koper JW, Meyer J, Wüst S. Characterization of a glucocorticoid receptor gene (GR, NR3C1) promoter polymorphism reveals functionality and extends a haplotype with putative clinical relevance. Am J Med Genet B Neuropsychiatr Genet 2009; 150:476-82.

Labuda M, Gahier A, Gagné V, Moghrabi A, Sinnett D, Krajinovic M. Polymorphisms in glucocorticoid receptor gene and the outcome of childhood acute lymphoblastic leukemia (ALL). Leuk Res 2010; 34:492-7.

Majnik J, Patocs A, Balogh K et al. Overrepresentation of the N363S variant of the glucocorticoid receptor gene in patients with bilateral adrenal incidentalomas. J Clin Endocrinol Metab 2006; 91:2796-9.

Mendonca BB, Leite MV, de Castro M et al. Female pseudohermaphroditism caused by a novel homozygous missense mutation of the GR gene. J Clin Endocrinol Metab 2002; 87:1805-9.

Russcher H, Smit P, van den Akker EL et al. Two polymorphisms in the glucocorticoid receptor gene directly affect glucocorticoid-regulated gene expression. J Clin Endocrinol Metab 2005; 90:5804-10.

Southren AL, Dominguez MO, Gordon GG et al. Nuclear translocation of the cytoplasmic glucocorticoid receptor in the iris-ciliary body and adjacent corneoscleral tissue of the rabbit following topical administration of various glucocorticoids. A rapid screening method for glucocorticoid activity. Invest Ophthalmol Vis Sci 1983; 24:147-52.

Tronche F, Opherk C, Moriggl R et al. Glucocorticoid receptor function in hepatocytes is essential to promote postnatal body growth. Genes Dev 2004; 18:492-7.

Uher R, Huezo-Diaz P, Perroud N et al. Genetic predictors of response to antidepressants in the GENDEP project. Pharmacogenomics J 2009; 9:225-33.

van Rossum EF, Feelders RA, van den Beld AW et al. Association of the ER22/23EK polymorphism in the glucocorticoid receptor gene with survival and C-reactive protein levels in elderly men. Am J Med 2004; 117:158-62.

Vottero A, Kino T, Combe H, Lecomte P, Chrousos GP. A novel, C-terminal dominant negative mutation of the GR causes familial glucocorticoid resistance through abnormal interactions with p160 steroid receptor coactivators. J Clin Endocrinol Metab 2002; 87:2658-67.

Wei Q, Lu XY, Liu L et al. Glucocorticoid receptor overexpression in forebrain: a mouse model of increased emotional lability. Proc Nat Acad Sci USA 2004; 101:11851-6.

Wintermantel TM, Bock D, Fleig V, Greiner EF, Schütz G. The epithelial glucocorticoid receptor is required for the normal timing of cell proliferation during mammary lobuloalveolar development but is dispensable for milk production. Mol Endocrinol 2005; 19:340-9.

NRXN1 (neurexin 1)

Cook EH Jr, Scherer SW. Copy-number variations associated with neuropsychiatric conditions. Nature 2008; 455:919-23.

Glessner JT, Wang K, Cai G et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 2009; 459:569-73.

Kim HG, Kishikawa S, Higgins AW et al. Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet 2008; 82:199-207.

Missler M, Zhang W, Rohlmann A et al. Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature 2003, 423:939-48.

Nussbaum J, Xu Q, Payne TJ et al. Significant association of the neurexin-1 gene (NRXN1) with nicotine dependence in European- and African-American smokers. Hum Mol Genet 2008; 17:1569-77.

Rujescu D, Ingason A, Cichon S et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet 2009; 18:988-96.

Shah AK, Tioleco NM, Nolan K et al. Rare NRXN1 promoter variants in patients with schizophrenia. Neurosci Lett 2010; 475:80-4.

Souza RP, Meltzer HY, Lieberman JA, Le Foll B, Kennedy JL. Influence of neurexin 1 (NRXN1) polymorphisms in clozapine response. Hum Psychopharmacol 2010; 25:582-5.

Vrijenhoek T, Buizer-Voskamp JE, van der Stelt I et al. Recurrent CNVs disrupt three candidate genes in schizophrenia patients. Am J Hum Genet 2008; 83:504-10.

Zahir FR, Baross A, Delaney AD et al. A patient with vertebral, cognitive and behavioural abnormalities and a de novo deletion of NRXN1alpha. J Med Genet 2008; 45:239-43.

NTRK2 (neurotrophic tyrosine kinase, receptor, type 2)

Bremer T, Diamond C, McKinney R et al. The pharmacogenetics of lithium response depends upon clinical co-morbidity. Mol Diagn Ther 2007; 11:161-70.

Chen Z, Simmons MS, Perry RT, Wiener HW, Harrell LE, Go RC. Genetic association of neurotrophic tyrosine kinase receptor type 2 (NTRK2) With Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet 2008; 147:363-9.

Cozza A, Melissari E, Iacopetti P et al. SNPs in neurotrophin system genes and Alzheimer’s disease in an Italian population. J Alzheimers Dis 2008; 15:61-70.

Dmitrzak-Weglarz M, Rybakowski JK, Suwalska A et al. Association studies of the BDNF and the NTRK2 gene polymorphisms with prophylactic lithium response in bipolar patients. Pharmacogenomics 2008; 9:1595-603.

Kerr B, Garcia-Rudaz C, Dorfman M, Paredes A, Ojeda SR. NTRK1 and NTRK2 receptors facilitate follicle assembly and early follicular development in the mouse ovary. Reproduction 2009; 138:131-40.

Kohli MA, Salyakina D, Pfennig A et al. Association of genetic variants in the neurotrophic receptor-encoding gene NTRK2 and a lifetime history of suicide attempts in depressed patients. Arch Gen Psychiatry 2010; 67:348-59.

Lin E, Hong CJ, Hwang JP et al. Gene-gene interactions of the brain-derived neurotrophic-factor and neurotrophic tyrosine kinase receptor 2 genes in geriatric depression. Rejuvenation Res 2009; 12:387-93.

Marchetti A, Felicioni L, Pelosi G et al. Frequent mutations in the neurotrophic tyrosine receptor kinase gene family in large cell neuroendocrine carcinoma of the lung. Hum Mutat 2008; 29:609-16.

Vink JM, Smit AB, de Geus EJ et al. Genome-wide association study of smoking initiation and current smoking. Am J Hum Genet 2009; 84:367-79.

Xu B, Goulding EH, Zang K et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci 2003; 6:736-42.

Xu K, Anderson TR, Neyer KM et al. Nucleotide sequence variation within the human tyrosine kinase B neurotrophin receptor gene: association with antisocial alcohol dependence. Pharmacogenomics J 2007; 7:368-79.

Yeo GS, Connie Hung CC, Rochford J et al. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat Neurosci 2004; 7:1187-9.

 A B C D E F G H I K L M N O P R S T U V W X Z