Gene References

 A B C D E F G H I K L M N O P R S T U V W X Z

C (Contd) →

CACNG2 (calcium channel, voltage-dependent, gamma subunit 2)

Liu YL, Fann CS, Liu CM et al. RASD2, MYH9, and CACNG2 genes at chromosome 22q12 associated with the subgroup of schizophrenia with non-deficit in sustained attention and executive function. Biol Psychiatry 2008; 64:789-96.

Nissenbaum J, Devor M, Seltzer Z et al. Susceptibility to chronic pain following nerve injury is genetically affected by CACNG2. Genome Res 2010; 20:1180-90.

Silberberg G, Levit A, Collier D et al. Stargazin involvement with bipolar disorder and response to lithium treatment. Pharmacogenet Genomics 2008; 18:403-12.

CALU (calumenin)

Yabe D, Nakamura T, Kanazawa N, Tashiro K, Honjo T. Calumenin, a Ca2+-binding protein retained in the endoplasmic reticulum with a novel carboxyl-terminal sequence, HDEF. J Biol Chem 1997; 272:18232-9.

Yabe D, Taniwaki M, Nakamura T, Kanazawa N, Tashiro K, Honjo T. Human calumenin gene (CALU): cDNA isolation and chromosomal mapping to 7q32. Genomics 1998; 49:331-3.

Wadelius M, Chen LY, Eriksson N et al. Association of warfarin dose with genes involved in its action and metabolism. Hum Genet 2007; 121:23-34.

CASR (calcium-sensing receptor)

Chang W, Tu C, Chen TH, Bikle D, Shoback D. The extracellular calcium-sensing receptor (CaSR) is a critical modulator of skeletal development. Sci Signal 2008; 1:1.

Finney B, Wilkinson WJ, Searchfield L et al. An exon 5-less splice variant of the extracellular calcium-sensing receptor rescues absence of the full-length receptor in the developing mouse lung. Exp Lung Res 2011; 37:269-78.

Hizaki K, Yamamoto H, Taniguchi H et al. Epigenetic inactivation of calcium-sensing receptor in colorectal carcinogenesis. Mod Pathol 2011; 24:876-84.

Koh J, Dar M, Untch BR et al. Regulator of G protein signaling 5 is highly expressed in parathyroid tumors and inhibits signaling by the calcium-sensing receptor. Mol Endocrinol 2011; 25:867-76.

Liu G, Hu X, Premkumar L, Chakrabarty S. Nifedipine synergizes with calcium in activating the calcium sensing receptor, suppressing the expression of thymidylate synthase and survivin and promoting sensitivity to fluorouracil in human colon carcinoma cells. Mol Carcinog. 2011. doi:10. 1002/mc. 20752.

Phillips CG, Harnett MT, Chen W, Smith SM. Calcium-sensing receptor activation depresses synaptic transmission. J Neurosci 2008; 28:12062-70.

Pollak MR, Brown EM, Chou YH et al. Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 1993; 75:1297-303.

Rothe HM, Shapiro WB, Sun WY, Chou SY. Calcium-sensing receptor gene polymorphism Arg990Gly and its possible effect on response to cinacalcet HCl. Pharmacogenet Genomics 2005; 15:29-34.

Thompson MD, Percy ME, McIntyre Burnham W, Cole DE. G protein-coupled receptors disrupted in human genetic disease. Methods Mol Biol 2008; 448:109-37.

Yoshida M, Mori A, Morimoto S et al. Novel and potent calcium-sensing receptor antagonists: Discovery of (5R)-N-[1-ethyl-1-(4-ethylphenyl)propyl]-2,7,7-trimethyl-5-phenyl-4,5,6,7-tetrahy dropyrazolo[1,5-a]pyrimidine-3-carboxamide monotosylate (TAK-075) as an orally active bone anabolic agent. Bioorg Med Chem 2011; 19:1881-94.

CAT (catalase)

Ahn J, Gammon MD, Santella RM et al. Associations between breast cancer risk and the catalase genotype, fruit and vegetable consumption, and supplement use. Am J Epidemiol 2005; 162:943-52.

Ahn J, Nowell S, McCann SE et al. Associations between catalase phenotype and genotype: modification by epidemiologic factors. Cancer Epidemiol Biomarkers Prev 2006; 15:1217-22.

Casp CB, She JX, McCormack WT. Genetic association of the catalase gene (CAT) with vitiligo susceptibility. Pigment Cell Res 2002; 15:62-6.

Flekac M, Skrha J, Hilgertova J, Lacinova Z, Jarolimkova M. Gene polymorphisms of superoxide dismutases and catalase in diabetes mellitus. BMC Med Genet 2008; 9:30.

Gavalas NG, Akhtar S, Gawkrodger DJ, Watson PF, Weetman AP, Kemp EH. Analysis of allelic variants in the catalase gene in patients with the skin depigmenting disorder vitiligo. Biochem Biophys Res Commun 2006; 345:1586-91.

Godin N, Liu F, Lau GJ et al. Catalase overexpression prevents hypertension and tubular apoptosis in angiotensinogen transgenic mice. Kidney Int 2010; 77:1086-97.

Góth L, Bigler NW. Catalase deficiency may complicate urate oxidase (rasburicase) therapy. Free Radic Res 2007; 41:953-5.

Góth L, Eaton JW. Hereditary catalase deficiencies and increased risk of diabetes. Lancet 2000; 356:1820-1.

Góth L, Rass P, Páy A. Catalase enzyme mutations and their association with diseases. Mol Diagn 2004; 8:141-9.

Goulas A, Fidani L, Kotsis A et al. An association study of a functional catalase gene polymorphism, -262C→T, and patients with Alzheimer’s disease. Neurosci Lett 2002; 330:210-3.

Hamilton HB, Neel JV. Genetic heterogeneity in human acatalasia. Am J Hum Genet 1963; 15:408-19.

Islam T, McConnell R, Gauderman WJ, Avol E, Peters JM, Gilliland FD. Ozone, oxidant defense genes, and risk of asthma during adolescence. Am J Respir Crit Care Med 2008; 177:388-95.

Jiang Z, Akey JM, Shi J et al. A polymorphism in the promoter region of catalase is associated with blood pressure levels. Hum Genet 2001; 109:95-8.

Kikumoto Y, Sugiyama H, Inoue T et al. Sensitization to alloxan-induced diabetes and pancreatic cell apoptosis in acatalasemic mice. Biochim Biophys Acta 2010; 1802:240-6.

Korotkina RN, Matskevich GN, Devlikanova ASh, Vishnevskii AA, Kunitsyn AG, Karelin AA. Activity of glutathione-metabolizing and antioxidant enzymes in malignant and benign tumors of human lungs. Bull Exp Biol Med 2002; 133:606-8.

Kotrikadze N, Alibegashvili M, Zibzibadze M et al. Activity and content of antioxidant enzymes in prostate tumors. Exp Oncol 2008; 30:244-7.

Leopold JA, Loscalzo J. Oxidative enzymopathies and vascular disease. Arterioscler Thromb Vasc Biol 2005; 25:1332-40.

Nadif R, Kleeberger SR, Kauffmann F. Polymorphisms in manganese superoxide dismutase and catalase genes: functional study in Hong Kong Chinese asthma patients. Clin Exp Allergy 2006; 36:1104-6.

Nadif R, Mintz M, Jedlicka A, Bertrand JP, Kleeberger SR, Kauffmann F. Association of CAT polymorphisms with catalase activity and exposure to environmental oxidative stimuli. Free Radic Res 2005; 39:1345-50.

Ogata M. Acatalasemia. Hum Genet 1991; 86:331-40.

Ogata M, Wang DH, Ogino K. Mammalian acatalasemia: the perspectives of bioinformatics and genetic toxicology. Acta Med Okayama 2008; 62:345-61.

Qin F, Lennon-Edwards S, Lancel S et al. Cardiac-specific overexpression of catalase identifies hydrogen peroxide-dependent and -independent phases of myocardial remodeling and prevents the progression to overt heart failure in G(alpha)q-overexpressing transgenic mice. Circ Heart Fail 2010; 3:306-13.

Quick SK, Shields PG, Nie J et al. Effect modification by catalase genotype suggests a role for oxidative stress in the association of hormone replacement therapy with postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev 2008; 17:1082-7.

Rajić V, Aplenc R, Debeljak M et al. Influence of the polymorphism in candidate genes on late cardiac damage in patients treated due to acute leukemia in childhood. Leuk Lymphoma 2009; 50:1693-8.

Sravani PV, Babu NK, Gopal KV et al. Determination of oxidative stress in vitiligo by measuring superoxide dismutase and catalase levels in vitiliginous and non-vitiliginous skin. Indian J Dermatol Venereol Leprol 2009; 75:268-71.

Watanabe Y, Metoki H, Ohkubo T et al. Accumulation of common polymorphisms is associated with development of hypertension: a 12-year follow-up from the Ohasama study. Hypertens Res 2010; 33:129-34.

Zhou XF, Cui J, DeStefano AL et al. Polymorphisms in the promoter region of catalase gene and essential hypertension. Dis Markers 2005; 21:3-7.

CBR1 (carbonyl reductase 1)

Bains OS, Karkling MJ, Grigliatti TA, Reid RE, Riggs KW. Two nonsynonymous single nucleotide polymorphisms of human carbonyl reductase 1 demonstrate reduced in vitro metabolism of daunorubicin and doxorubicin. Drug Metab Dispos 2009; 37:1107-14.

Forrest GL, Gonzalez B. Carbonyl reductase. Chem Biol Interact 2000; 129:21-40.

Gonzalez-Covarrubias V, Ghosh D, Lakhman SS, Pendyala L, Blanco JG. A functional genetic polymorphism on human carbonyl reductase 1 (CBR1 V88I) impacts on catalytic activity and NADPH binding affinity. Drug Metab Dispos 2007; 35:973-80.

Gonzalez-Covarrubias V, Zhang J, Kalabus JL, Relling MV, Blanco JG. Pharmacogenetics of human carbonyl reductase 1 (CBR1) in livers from black and white donors. Drug Metab Dispos 2009; 37:400-7.

Tak E, Lee S, Lee J et al. Human carbonyl reductase 1 upregulated by hypoxia renders resistance to apoptosis in hepatocellular carcinoma cells. J Hepatol 2011; 54:328-39.

CBR3 (carbonyl reductase 3)

Ebert B, Kisiela M, Malátková P, El-Hawari Y, Maser E. Regulation of human carbonyl reductase 3 (CBR3; SDR21C2) expression by Nrf2 in cultured cancer cells. Biochemistry 2010; 49:8499-511.

Lal S, Sandanaraj E, Wong ZW et al. CBR1 and CBR3 pharmacogenetics and their influence on doxorubicin disposition in Asian breast cancer patients. Cancer Sci 2008; 99:2045-54.

Tan SH, Lee SC, Goh BC, Wong J. Pharmacogenetics in breast cancer therapy. Clin Cancer Res 2008; 14:8027-41.

CBS (cystathionine beta-synthase)

Barbaux S, Kluijtmans LA, Whitehead AS. Accurate and rapid “multiplex heteroduplexing” method for genotyping key enzymes involved in folate/homocysteine metabolism. Clin Chem 2000; 46:907-12.

Beyer K, Lao JI, Carrato C et al. Cystathionine beta synthase as a risk factor for Alzheimer disease. Curr Alzheimer Res 2004; 1:127-33.

Gaustadnes M, Wilcken B, Oliveriusova J et al. The molecular basis of cystathionine beta-synthase deficiency in Australian patients: genotype-phenotype correlations and response to treatment. Hum Mutat 2002; 20:117-26.

Kluijtmans LA, Young IS, Boreham CA et al. Genetic and nutritional factors contributing to hyperhomocysteinemia in young adults. Blood 2003; 101:2483-8.

Krajinovic M, Robaey P, Chiasson S et al. Polymorphisms of genes controlling homocysteine levels and IQ score following the treatment for childhood ALL. Pharmacogenomics 2005; 6:293-302.

Maitland-van der Zee AH, Lynch A, Boerwinkle E et al. Interactions between the single nucleotide polymorphisms in the homocysteine pathway (MTHFR 677C>T, MTHFR 1298 A>C, and CBSins) and the efficacy of HMG-CoA reductase inhibitors in preventing cardiovascular disease in high-risk patients of hypertension: the GenHAT study. Pharmacogenet Genomics 2008; 18:651-6.

Porter KE, Basu A, Hubbard AE et al. Association of genetic variation in cystathionine-beta-synthase and arsenic metabolism. Environ Res 2010; 110:580-7.

Rubini M, Brusati R, Garattini G et al. Cystathionine beta-synthase c. 844ins68 gene variant and non-syndromic cleft lip and palate. Am J Med Genet A 2005; 136:368-72.

Sasaki S, Watanabe T, Kobunai T, Nagawa H. Effect of cystathionine beta-synthase variant 844ins68bp and methylenetetrahydrofolate reductase A1298C polymorphisms in xenografts on 5-FU efficacy and doubling time. Cancer Lett 2006; 24:256-62.

Summers CM, Cucchiara AJ, Nackos E et al. Functional polymorphisms of folate-metabolizing enzymes in relation to homocysteine concentrations in systemic Lupus erythematosus. J Rheumatol 2008; 35:2179-86.

CCND1 (cyclin D1)

Costea I, Moghrabi A, Krajinovic M. The influence of cyclin D1 (CCND1) 870A>G polymorphism and CCND1-thymidylate synthase (TS) gene-gene interaction on the outcome of childhood acute lymphoblastic leukaemia. Pharmacogenetics 2003; 13:577-80.

Frech MS, Torre KM, Robinson GW, Furth PA. Loss of cyclin D1 in concert with deregulated estrogen receptor alpha expression induces DNA damage response activation and interrupts mammary gland morphogenesis. Oncogene 2008; 27:3186-93.

Pascual-García M, Carbó JM, León T et al. Liver X receptors inhibit macrophage proliferation through downregulation of cyclins D1 and B1 and cyclin-dependent kinases 2 and 4. J Immunol 2011; 186:4656-67.

Ramachandran S, Hoban PR, Ichii-Jones F et al. Glutathione S-transferase GSTP1 and cyclin D1 genotypes: association with numbers of basal cell carcinomas in a patient subgroup at high-risk of multiple tumours. Pharmacogenetics 2000; 10:545-56.

Rögelsperger O, Wlcek K, Ekmekcioglu C et al. Melatonin receptors, melatonin metabolizing enzymes and cyclin D1 in human breast cancer. J Recept Signal Transduct Res 2011; 31:180-7.

Rydzanicz M, Golusinski P, Mielcarek-Kuchta D, Golusinski W, Szyfter K. Cyclin D1 gene (CCND1) polymorphism and the risk of squamous cell carcinoma of the larynx. Eur Arch Otorhinolaryngol 2006; 263:43-8.

Zatyka M, da Silva NF, Clifford SC et al. Identification of cyclin D1 and other novel targets for the von Hippel-Lindau tumor suppressor gene by expression array analysis and investigation of cyclin D1 genotype as a modifier in von Hippel-Lindau disease. Cancer Res 2002; 62:3803-11.

CCR5 (chemokine (C-C motif) receptor 5)

Afzal AR, Kiechl S, Daryani YP et al. Common CCR5-del32 frameshift mutation associated with serum levels of inflammatory markers and cardiovascular disease risk in the Bruneck population. Stroke 2008; 39:1972-8.

Al-Abdulhadi SA, Al-Rabia MW. Linkage and haplotype analysis for chemokine receptors clustered on chromosome 3p21. 3 and transmitted in family pedigrees with asthma and atopy. Ann Saudi Med 2010; 30:115-22.

Alkhatib G. The biology of CCR5 and CXCR4. Curr Opin HIV AIDS 2009; 4:96-103.

Alvarez V, López-Larrea C, Coto E. Mutational analysis of the CCR5 and CXCR4 genes (HIV-1 co-receptors) in resistance to HIV-1 infection and AIDS development among intravenous drug users. Hum Genet 1998; 102:483-6.

Balistreri CR, Grimaldi MP, Vasto S et al. Association between the polymorphism of CCR5 and Alzheimer’s disease: results of a study performed on male and female patients from Northern Italy. Ann N Y Acad Sci 2006; 1089:454-61.

Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 1999; 17:657-700.

Blanpain C, Lee B, Tackoen M et al. Multiple nonfunctional alleles of CCR5 are frequent in various human populations. Blood 2000; 96:1638-45.

Blanpain C, Libert F, Vassart G, Parmentier M. CCR5 and HIV infection. Receptors Channels 2002; 8:19-31.

Bogner JR, Lutz B, Klein HG, Pollerer C, Troendle U, Goebel FD. Association of highly active antiretroviral therapy failure with chemokine receptor 5 wild type. HIV Med 2004; 5:264-72.

Brumme ZL, Chan KJ, Dong W et al. CCR5Delta32 and promoter polymorphisms are not correlated with initial virological or immunological treatment response. AIDS 2001; 15:2259-66.

Brumme ZL, Henrick BM, Brumme CJ, Hogg RS, Montaner JS, Harrigan PR. Short communication. Association of the CCR5delta32 mutation with clinical response and >5-year survival following initiation of first triple antiretroviral regimen. Antivir Ther 2005; 10:849-53.

Buhler MM, Craig M, Donaghue KC et al. CCR5 genotyping in an Australian and New Zealand type 1 diabetes cohort. Autoimmunity 2002; 35:457-61.

Burns JC, Shimizu C, Gonzalez E et al. Genetic variations in the receptor-ligand pair CCR5 and CCL3L1 are important determinants of susceptibility to Kawasaki disease. J Infect Dis 2005; 192:344-9.

Carrington M, Kissner T, Gerrard B, Ivanov S, O’Brien SJ, Dean M. Novel alleles of the chemokine-receptor gene CCR5. Am J Hum Genet 1997; 61:1261-7.

Cheong JY, Cho SW, Choi JY et al. RANTES, MCP-1, CCR2, CCR5, CXCR1 and CXCR4 gene polymorphisms are not associated with the outcome of hepatitis B virus infection: results from a large scale single ethnic population. J Korean Med Sci 2007; 22:529-35.

Clark VJ, Metheny N, Dean M, Peterson RJ. Statistical estimation and pedigree analysis of CCR2-CCR5 haplotypes. Hum Genet 2001; 108:484-93.

Combarros O, Infante J, Llorca J, Peña N, Fernández-Viadero C, Berciano J. The chemokine receptor CCR5-Delta32 gene mutation is not protective against Alzheimer’s disease. Neurosci Lett 2004; 366:312-4.

Cooper DA, Heera J, Goodrich J et al. Maraviroc versus efavirenz, both in combination with zidovudine-lamivudine, for the treatment of antiretroviral-naive subjects with CCR5-tropic HIV-1 infection. J Infect Dis 2010; 201:803-13.

Daley D, Lemire M, Akhabir L et al. Analyses of associations with asthma in four asthma population samples from Canada and Australia. Hum Genet 2009; 125:445-59.

Dean M, Carrington M, Winkler C et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 1996; 273:1856-62.

Degerli N, Yilmaz E, Bardakci F. The delta32 allele distribution of the CCR5 gene and its relationship with certain cancers in a Turkish population. Clin Biochem 2005; 38:248-52.

Dragic T, Litwin V, Allaway GP et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996; 381:667-73.

Emmelkamp JM, Rockstroh JK. CCR5 antagonists: comparison of efficacy, side effects, pharmacokinetics and interactions-review of the literature. Eur J Med Res 2007; 12:409-17.

Gade-Andavolu R, Comings DE, MacMurray J et al. Association of CCR5 delta32 deletion with early death in multiple sclerosis. Genet Med 2004; 6:126-31.

Galvani AP, Novembre J. The evolutionary history of the CCR5-Delta32 HIV-resistance mutation. Microbes Infect 2005; 7:302-9.

Ghilardi G, Biondi ML, Battaglioli L, Zambon A, Guagnellini E, Scorza R. Genetic risk factor characterizes abdominal aortic aneurysm from arterial occlusive disease in human beings: CCR5 Delta 32 deletion. J Vasc Surg 2004; 40:995-1000.

Gómez-Reino JJ, Pablos JL, Carreira PE et al. Association of rheumatoid arthritis with a functional chemokine receptor, CCR5. Arthritis Rheum 1999; 42:989-92.

González P, Alvarez R, Batalla A et al. Genetic variation at the chemokine receptors CCR5/CCR2 in myocardial infarction. Genes Immun 2001; 2:191-5.

Goulding C, McManus R, Murphy A et al. The CCR5-delta32 mutation: impact on disease outcome in individuals with hepatitis C infection from a single source. Gut 2005; 54:1157-61.

Guérin S, Meyer L, Theodorou I et al. CCR5 delta32 deletion and response to highly active antiretroviral therapy in HIV-1-infected patients. AIDS 2000; 14:2788-90.

Guo CJ, Li Y, Tian S, Wang X, Douglas SD, Ho WZ. Morphine enhances HIV infection of human blood mononuclear phagocytes through modulation of beta-chemokines and CCR5 receptor. J Investig Med 2002; 50:435-42.

Heredia A, Amoroso A, Davis C et al. Rapamycin causes down-regulation of CCR5 and accumulation of anti-HIV beta-chemokines: an approach to suppress R5 strains of HIV-1. Proc Natl Acad Sci USA 2003; 100:10411-6.

Heredia A, Latinovic O, Gallo RC et al. Reduction of CCR5 with low-dose rapamycin enhances the antiviral activity of vicriviroc against both sensitive and drug-resistant HIV-1. Proc Natl Acad Sci USA 2008; 105:20476-81.

Herfarth H, Pollok-Kopp B, Göke M, Press A, Oppermann M. Polymorphism of CC chemokine receptors CCR2 and CCR5 in Crohn’s disease. Immunol Lett 2001; 77:113-7.

Horvath T, Madi BC, Iuppa IM, Kennedy GE, Rutherford G, Read JS. Interventions for preventing late postnatal mother-to-child transmission of HIV. Cochrane Database Syst Rev 2009; CD006734.

Huerta C, Alvarez V, Mata IF et al. Chemokines (RANTES and MCP-1) and chemokine-receptors (CCR2 and CCR5) gene polymorphisms in Alzheimer’s and Parkinson’s disease. Neurosci Lett 2004; 370:151-4.

Kalev I, Oselin K, Pärlist P et al. CC-chemokine receptor CCR5-del32 mutation as a modifying pathogenetic factor in type I diabetes. J Diabetes Complications 2003; 17:387-91.

Kantarci OH, Morales Y, Ziemer PA et al. CCR5Delta32 polymorphism effects on CCR5 expression, patterns of immunopathology and disease course in multiple sclerosis. J Neuroimmunol 2005; 169:137-43.

Karaali ZE, Sozen S, Yurdum M et al. Effect of genetic variants of chemokine receptors on the development of myocardial infarction in Turkish population. Mol Biol Rep 2010; 37:3615-9.

Klibanov OM. Vicriviroc, a CCR5 receptor antagonist for the potential treatment of HIV infection. Curr Opin Investig Drugs 2009; 10:845-59.

Konishi I, Horiike N, Hiasa Y, Michitaka K, Onji M. CCR5 promoter polymorphism influences the interferon response of patients with chronic hepatitis C in Japan. Intervirology 2004; 47:114-20.

Kostrikis LG, Neumann AU, Thomson B et al. A polymorphism in the regulatory region of the CC-chemokine receptor 5 gene influences perinatal transmission of human immunodeficiency virus type 1 to African-American infants. J Virol 1999; 73:10264-71.

Kostulas N, Markaki I, Kostulas V, Hillert J, Kostulas K. Common CCR 5 polymorphism in stroke: the CCR 5 delta32 polymorphism differentiates cardioembolism from other aetiologies of ischaemic cerebrovascular diseases. Scand J Immunol 2009; 70:475-80.

Kulkarni H, Agan BK, Marconi VC et al. CCL3L1-CCR5 genotype improves the assessment of AIDS Risk in HIV-1-infected individuals. PLoS One 2008. doi:10. 1371/journal. pone. 0003165.

Kümmerle T, Lehmann C, Hartmann P, Wyen C, Fätkenheuer G. Vicriviroc: a CR5 antagonist for treatment-experienced patients with HIV-1 infection. Expert Opin Investig Drugs 2009; 18:1773-85.

Laurichesse JJ, Persoz A, Theodorou I, Rouzioux C, Delfraissy JF, Meyer L. Improved virological response to highly active antiretroviral therapy in HIV-1-infected patients carrying the CCR5 Delta32 deletion. HIV Med 2007; 8:213-9.

Libert F, Cochaux P, Beckman G et al. The deltaccr5 mutation conferring protection against HIV-1 in Caucasian populations has a single and recent origin in Northeastern Europe. Hum Mol Genet 1998; 7:399-406.

Lieberman-Blum SS, Fung HB, Bandres JC. Maraviroc: a CCR5-receptor antagonist for the treatment of HIV-1 infection. Clin Ther 2008; 30:1228-50.

Lim JK, Glass WG, McDermott DH, Murphy PM. CCR5: no longer a “good for nothing” gene-chemokine control of West Nile virus infection. Trends Immunol 2006; 27:308-12.

Lim JK, McDermott DH, Lisco A et al. CCR5 deficiency is a risk factor for early clinical manifestations of West Nile virus infection but not for viral transmission. J Infect Dis 2010; 201:178-85.

Liu R, Paxton WA, Choe S et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996; 86:367-77.

Martin MP, Dean M, Smith MW et al. Genetic acceleration of AIDS progression by a promoter variant of CCR5. Science 1998; 282:1907-11.

Martinson JJ, Chapman NH, Rees DC, Liu YT, Clegg JB. Global distribution of the CCR5 gene 32-basepair deletion. Nat Genet 1997; 16:100-3.

Mettimano M, Specchia ML, La Torre G et al. Blood pressure regulation by CCR genes. Clin Exp Hypertens 2006; 28:611-8.

Mills SG, DeMartino JA. Chemokine receptor-directed agents as novel anti-HIV-1 therapies. Curr Top Med Chem 2004; 4:1017-33.

Nakajima K, Tanaka Y, Nomiyama T et al. Chemokine receptor genotype is associated with diabetic nephropathy in Japanese with type 2 diabetes. Diabetes 2002; 51:238-42.

Nakajima T, Kimura A. Genetic factors that confer sensitivity to HAART in HIV-infected subjects: implication of a benefit of an earlier initiation of HAART. Pharmacogenomics 2008; 9:1347-51.

Nguyêñ GT, Carrington M, Beeler JA et al. Phenotypic expressions of CCR5-delta32/delta32 homozygosity. J Acquir Immune Defic Syndr 1999; 22:75-82.

O’Brien TR, McDermott DH, Ioannidis JP et al. Effect of chemokine receptor gene polymorphisms on the response to potent antiretroviral therapy. AIDS 2000; 14:821-6.

Pai JK, Kraft P, Cannuscio CC et al. Polymorphisms in the CC-chemokine receptor-2 (CCR2) and -5 (CCR5) genes and risk of coronary heart disease among US women. Atherosclerosis 2006; 186:132-9.

Parczewski M, Leszczyszyn-Pynka M, Kaczmarczyk M et al. Sequence variants of chemokine receptor genes and susceptibility to HIV-1 infection. J Appl Genet 2009; 50:159-66.

Prahalad S. Negative association between the chemokine receptor CCR5-Delta32 polymorphism and rheumatoid arthritis: a meta-analysis. Genes Immun 2006; 7:264-8.

Princen K, Schols D. HIV chemokine receptor inhibitors as novel anti-HIV drugs. Cytokine Growth Factor Rev 2005; 16:659-77.

Promrat K, McDermott DH, Gonzalez CM et al. Associations of chemokine system polymorphisms with clinical outcomes and treatment responses of chronic hepatitis C. Gastroenterology 2003; 124:352-60.

Pulendran B, Miller J, Querec TD et al. Case of yellow fever vaccine-associated viscerotropic disease with prolonged viremia, robust adaptive immune responses, and polymorphisms in CCR5 and RANTES genes. J Infect Dis 2008; 198:500-7.

Pulkkinen K, Luomala M, Kuusisto H et al. Increase in CCR5 Delta32/Delta32 genotype in multiple sclerosis. Acta Neurol Scand 2004; 109:342-7.

Rector A, Vermeire S, Thoelen I et al. Analysis of the CC chemokine receptor 5 (CCR5) delta-32 polymorphism in inflammatory bowel disease. Hum Genet 2001; 108:190-3.

Reiche EM, Bonametti AM, Voltarelli JC, Morimoto HK, Watanabe MA. Genetic polymorphisms in the chemokine and chemokine receptors: impact on clinical course and therapy of the human immunodeficiency virus type 1 infection (HIV-1). Curr Med Chem 2007; 14:1325-34.

Rossol M, Pierer M, Arnold S et al. Negative association of the chemokine receptor CCR5 d32 polymorphism with systemic inflammatory response, extra-articular symptoms and joint erosion in rheumatoid arthritis. Arthritis Res Ther 2009; 11:91.

Samson M, Libert F, Doranz BJ et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996; 382:722-5.

Sandford AJ, Zhu S, Bai TR, Fitzgerald JM, Paré PD. The role of the C-C chemokine receptor-5 Delta32 polymorphism in asthma and in the production of regulated on activation, normal T cells expressed and secreted. J Allergy Clin Immunol 2001; 108:69-73.

Sandford B, Bown M, London N, Sayers R. The role of the CCR5 Delta32 polymorphism in abdominal aortic aneurysms. Int J Immunogenet 2009; 36:199-205.

Sellebjerg F, Kristiansen TB, Wittenhagen P et al. Chemokine receptor CCR5 in interferon-treated multiple sclerosis. Acta Neurol Scand 2007; 115:413-8.

Singh H, Sachan R, Jain M, Mittal B. CCR5-Delta32 polymorphism and susceptibility to cervical cancer: association with early stage of cervical cancer. Oncol Res 2008; 17:87-91.

Singh KK, Hughes MD, Chen J et al. Associations of chemokine receptor polymorphisms With HIV-1 mother-to-child transmission in sub-Saharan Africa: possible modulation of genetic effects by antiretrovirals. J Acquir Immune Defic Syndr 2008; 49:259-65.

Soto-Sánchez J, Santos-Juanes J, Coto-Segura P et al. Genetic variation at the CCR5/CCR2 gene cluster and risk of psoriasis and psoriatic arthritis. Cytokine 2010; 50:114-6.

Srivastava A, Pandey SN, Choudhuri G, Mittal B. CCR5 Delta32 polymorphism: associated with gallbladder cancer susceptibility. Scand J Immunol 2008; 67:516-22.

Srivastava P, Helms PJ, Stewart D, Main M, Russell G. Association of CCR5Delta32 with reduced risk of childhood but not adult asthma. Thorax 2003; 58:222-6.

Sullivan AD, Wigginton J, Kirschner D. The coreceptor mutation CCR5Delta32 influences the dynamics of HIV epidemics and is selected for by HIV. Proc Natl Acad Sci USA 2001; 98:10214-9.

Tang J, Rivers C, Karita E et al. Allelic variants of human beta-chemokine receptor 5 (CCR5) promoter: evolutionary relationships and predictable associations with HIV-1 disease progression. Genes Immun 1999; 1:20-7.

Tommasi AM, Fabris P, Carderi I et al. Lack of higher frequency of the chemokine receptor 5-delta32/delta32 genotype in hepatitis C. J Clin Gastroenterol 2006; 40:440-3.

van Veen T, Nielsen J, Berkhof J et al. CCL5 and CCR5 genotypes modify clinical, radiological and pathological features of multiple sclerosis. J Neuroimmunol 2007; 190:157-64.

Wasmuth HE, Werth A, Mueller T et al. CC chemokine receptor 5 delta32 polymorphism in two independent cohorts of hepatitis C virus infected patients without hemophilia. J Mol Med 2004; 82:64-9.

Wit FW, van Rij RP, Weverling GJ, Lange JM, Schuitemaker H. CC chemokine receptor 5 delta32 and CC chemokine receptor 2 64I polymorphisms do not influence the virologic and immunologic response to antiretroviral combination therapy in human immunodeficiency virus type 1-infected patients. J Infect Dis 2002; 186:1726-32.

Woitas RP, Ahlenstiel G, Iwan A et al. Frequency of the HIV-protective CC chemokine receptor 5-Delta32/Delta32 genotype is increased in hepatitis C. Gastroenterology 2002; 122:1721-8.

Yeni P, Lamarca A, Berger D et al. Antiviral activity and safety of aplaviroc, a CCR5 antagonist, in combination with lopinavir/ritonavir in HIV-infected, therapy-naïve patients: results of the EPIC study (CCR100136). HIV Med 2009; 10:116-24.

Yost R, Pasquale TR, Sahloff EG. Maraviroc: a coreceptor CCR5 antagonist for management of HIV infection. Am J Health Syst Pharm 2009; 66:715-26.

Zhang M, Ardlie K, Wacholder S, Welch R, Chanock S, O’Brien TR. Genetic variations in CC chemokine receptors and hypertension. Am J Hypertens 2006; 19:67-72.

Zheng B, Wiklund F, Gharizadeh B et al. Genetic polymorphism of chemokine receptors CCR2 and CCR5 in Swedish cervical cancer patients. Anticancer Res 2006; 26:3669-74.

CDA (cytidine deaminase)

Gilbert JA, Salavaggione OE, Ji Y et al. Gemcitabine pharmacogenomics: cytidine deaminase and deoxycytidylate deaminase gene resequencing and functional genomics. Clin Cancer Res 2006; 12:1794-803.

Gusella M, Pasini F, Bolzonella C et al. Equilibrative nucleoside transporter 1 genotype, cytidine deaminase activity and age predict gemcitabine plasma clearance in patients with solid tumours. Br J Clin Pharmacol 2011; 71:437-44.

Sugiyama E, Kaniwa N, Kim SR et al. Pharmacokinetics of gemcitabine in Japanese cancer patients: the impact of a cytidine deaminase polymorphism. J Clin Oncol 2007; 25:32-42.

Yue L, Saikawa Y, Ota K et al. A functional single-nucleotide polymorphism in the human cytidine deaminase gene contributing to ara-C sensitivity. Pharmacogenetics 2003; 13:29-38.

CDK1 (cyclin-dependent kinase 1)

Abdullah C, Wang X, Becker D. Expression analysis and molecular targeting of cyclin-dependent kinases in advanced melanoma. Cell Cycle 2011; 10:997-88.

Baroja A, de la Hoz C, Álvarez A et al. Polyploidization and exit from cell cycle as mechanisms of cultured melanoma cell resistance to methotrexate. Life Sci 1998; 62:2275-82.

Bosco P, Caraci F, Copani A et al. The CDC2 I-G-T haplotype associated with the APOE epsilon4 allele increases the risk of sporadic Alzheimer’s disease in Sicily. Neurosci Lett 2007; 419:195-8.

Chen H, Huang Q, Dong J, Zhai DZ, Wang AD, Lan Q. Overexpression of CDC2/CyclinB1 in gliomas, and CDC2 depletion inhibits proliferation of human glioma cells in vitro and in vivo. BMC Cancer 2008; 8:29.

Grupe A, Li Y, Rowland C et al. A scan of chromosome 10 identifies a novel locus showing strong association with late-onset Alzheimer disease. Am J Hum Genet 2006; 78:78-88.

Johansson A, Hampel H, Faltraco F et al. Increased frequency of a new polymorphism in the cell division cycle 2 (cdc2) gene in patients with Alzheimer’s disease and frontotemporal dementia. Neurosci Lett 2003; 340:69-73.

Johnson N, Bentley J, Wang LZ et al. Pre-clinical evaluation of cyclin-dependent kinase 2 and 1 inhibition in anti-estrogen-sensitive and resistant breast cancer cells. Br J Cancer 2010; 102:342-50.

Liang X, Schnetz-Boutaud N, Bartlett J et al. Association analysis of genetic polymorphisms in the CDC2 gene with late-onset Alzheimer disease. Dement Geriatr Cogn Disord 2007; 23:126-32.

Meyer A, Merkel S, Brückl W et al. Cdc2 as prognostic marker in stage UICC II colon carcinomas. Eur J Cancer 2009; 45:1466-73.

Motwani M, Li X, Schwartz GK. Flavopiridol, a cyclin-dependent kinase inhibitor, prevents spindle inhibitor-induced endoreduplication in human cancer cells. Clin Cancer Res 2000; 6:924-32.

Nakayama S, Torikoshi Y, Takahashi T et al. Prediction of paclitaxel sensitivity by CDK1 and CDK2 activity in human breast cancer cells. Breast Cancer Res 2009; 11:12.

Ohta T, Okamoto K, Isohashi F et al. T-loop deletion of CDC2 from breast cancer tissues eliminates binding to cyclin B1 and cyclin-dependent kinase inhibitor p21. Cancer Res 1998; 58:1095-8.

Rahman MM, Kipreos ET. The specific roles of mitotic cyclins revealed. Cell Cycle 2010; 9:22-3.

Vecchione A, Baldassarre G, Ishii H et al. Fez1/Lzts1 absence impairs Cdk1/Cdc25C interaction during mitosis and predisposes mice to cancer development. Cancer Cell 2007; 11:275-89.

Zhang WW, Zhang XJ, Liu HX et al. Cdk1 is required for the self-renewal of mouse embryonic stem cells. J Cell Biochem 2011; 112:942-8.

CDK2 (cyclin-dependent kinase 2)

Akli S, Van Pelt CS, Bui T, Meijer L, Keyomarsi K. Cdk2 is required for breast cancer mediated by the low molecular weight isoform of cyclin E. Cancer Res 2011; 71:3377-86.

Driver KE, Song H, Lesueur F et al. Association of single-nucleotide polymorphisms in the cell cycle genes with breast cancer in the British population. Carcinogenesis 2008; 29:333-41.

Goode EL, Fridley BL, Vierkant RA et al. Candidate gene analysis using imputed genotypes: cell cycle single-nucleotide polymorphisms and ovarian cancer risk. Cancer Epidemiol Biomarkers Prev 2009; 18:935-44.

Hakonarson H, Qu HQ, Bradfield JP et al. A novel susceptibility locus for type 1 diabetes on Chr12q13 identified by a genome-wide association study. Diabetes 2008; 57:1143-6.

Jardin F, Picquenot JM, Parmentier F et al. Detection of gene copy number aberrations in mantle cell lymphoma by a single quantitative multiplex PCR assay: clinicopathological relevance and prognosis value. Br J Haematol 2009; 146:607-18.

Mavaddat N, Dunning AM, Ponder BA, Easton DF, Pharoah PD. Common genetic variation in candidate genes and susceptibility to subtypes of breast cancer. Cancer Epidemiol Biomarkers Prev 2009; 18:255-9.

Miyamoto T, Koh E, Sakugawa N et al. Two single nucleotide polymorphisms in PRDM9 (MEISETZ) gene may be a genetic risk factor for Japanese patients with azoospermia by meiotic arrest. J Assist Reprod Genet 2008; 25:553-7.

Satyanarayana A, Kaldis P. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 2009; 28:2925-39.

Sherr CJ, Roberts JM. Living with or without cyclins and cyclin-dependent kinases. Genes Dev 2004; 18:2699-711.

Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447:661-78.

CDK4 (cyclin-dependent kinase 4)

Finn RS, Dering J, Conklin D et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res 2009; 11:77.

Gayther SA, Song H, Ramus SJ et al. Tagging single nucleotide polymorphisms in cell cycle control genes and susceptibility to invasive epithelial ovarian cancer. Cancer Res 2007; 67:3027-35.

Goldstein AM, Chidambaram A, Halpern A et al. Rarity of CDK4 germline mutations in familial melanoma. Melanoma Res 2002; 12:51-5.

Lee YM, Sicinski P. Targeting cyclins and cyclin-dependent kinases in cancer: lessons from mice, hopes for therapeutic applications in human. Cell Cycle 2006; 5:2110-4.

Meenakshisundaram R, Gragnoli C. CDK4 IVS4-nt40G→A and T2D-associated obesity in Italians. J Cell Physiol 2009; 221:273-5.

Molven A, Grimstvedt MB, Steine SJ et al. A large Norwegian family with inherited malignant melanoma, multiple atypical nevi, and CDK4 mutation. Genes Chromosomes Cancer 2005; 44:10-8.

Nielsen EM, Hansen L, Stissing T et al. Studies of variations of the cyclin-dependent kinase inhibitor 1C and the cyclin-dependent kinase 4 genes in relation to type 2 diabetes mellitus and related quantitative traits. J Mol Med 2005; 83:353-61.

Pollock PM, Trent JM. The genetics of cutaneous melanoma. Clin Lab Med 2000; 20:667-90.

Soufir N, Avril MF, Chompret A et al. Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. Hum Mol Genet 1998; 7:209-16.

Sutherland RL, Musgrove EA. CDK inhibitors as potential breast cancer therapeutics: new evidence for enhanced efficacy in ER+ disease. Breast Cancer Res 2009; 11:112.

Vax VV, Bibi R, Diaz-Cano S et al. Activating point mutations in cyclin-dependent kinase 4 are not seen in sporadic pituitary adenomas, insulinomas or Leydig cell tumours. J Endocrinol 2003; 178:301-10.

Weller M, Felsberg J, Hartmann C et al. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol 2009; 27:5743-50.

Wölfel T, Hauer M, Schneider J et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 1995; 269:1281-4.

Ye Y, Yang H, Grossman HB, Dinney C, Wu X, Gu J. Genetic variants in cell cycle control pathway confer susceptibility to bladder cancer. Cancer 2008; 112:2467-74.

Zuo L, Weger J, Yang Q et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 1996; 12:97-9.

CDK6 (cyclin-dependent kinase 6)

Alvi AJ, Austen B, Weston VJ et al. A novel CDK inhibitor, CYC202 (R-roscovitine), overcomes the defect in p53-dependent apoptosis in B-CLL by down-regulation of genes involved in transcription regulation and survival. Blood 2005; 105:4484-91.

Asiedu C, Biggs J, Lilly M, Kraft AS. Inhibition of leukemic cell growth by the protein kinase C activator bryostatin 1 correlates with the dephosphorylation of cyclin-dependent kinase 2. Cancer Res 1995; 55:3716-20.

Basso AD, Doll RJ. Inhibition of cyclin-dependent kinases – a review of the recent patent literature. Recent Pat Anticancer Drug Discov 2006; 1:357-67.

Benson C, White J, de Bono J et al. A phase I trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R-Roscovitine), administered twice daily for 7 days every 21 days. Br J Cancer 2007; 96:29-37.

Beukelaers P, Vandenbosch R, Caron N et al. Cdk6-dependent regulation of G(1)Length controls adult neurogenesis. Stem Cells 2011; 29:713-24.

Bible KC, Lensing JL, Nelson SA et al. Phase 1 trial of flavopiridol combined with cisplatin or carboplatin in patients with advanced malignancies with the assessment of pharmacokinetic and pharmacodynamic end points. Clin Cancer Res 2005; 11:5935-41.

Burdette-Radoux S, Tozer RG, Lohmann RC et al. Phase II trial of flavopiridol, a cyclin dependent kinase inhibitor, in untreated metastatic malignant melanoma. Invest New Drugs 2004; 22:315-22.

Byrd JC, Lin TS, Dalton JT et al. Flavopiridol administered using a pharmacologically derived schedule is associated with marked clinical efficacy in refractory, genetically high-risk chronic lymphocytic leukemia. Blood 2007; 109:399-404.

Camidge DR, Pemberton M, Growcott J et al. A phase I pharmacodynamic study of the effects of the cyclin-dependent kinase-inhibitor AZD5438 on cell cycle markers within the buccal mucosa, plucked scalp hairs and peripheral blood mononucleocytes of healthy male volunteers. Cancer Chemother Pharmacol 2007; 60:479-88.

Dickson MA, Schwartz GK. Development of cell-cycle inhibitors for cancer therapy. Curr Oncol 2009; 16:36-43.

Dispenzieri A, Gertz MA, Lacy MQ et al. Flavopiridol in patients with relapsed or refractory multiple myeloma: a phase 2 trial with clinical and pharmacodynamic end-points. Haematologica 2006; 91:390-3.

Dittrich C, Zandvliet AS, Gneist M, Huitema AD, King AA, Wanders J. A phase I and pharmacokinetic study of indisulam in combination with carboplatin. Br J Cancer 2007; 96:559-66.

Driver KE, Song H, Lesueur F et al. Association of single-nucleotide polymorphisms in the cell cycle genes with breast cancer in the British population. Carcinogenesis 2008; 29:333-41.

El-Rayes BF, Gadgeel S, Parchment R, Lorusso P, Philip PA. A phase I study of flavopiridol and docetaxel. Invest New Drugs 2006; 24:305-10.

El-Rayes BF, Gadgeel S, Shields AF, Manza S, Lorusso P, Philip PA. Phase I study of bryostatin 1 and gemcitabine. Clin Cancer Res 2006; 12:7059-62.

Fischer PM, Gianella-Borradori A. Recent progress in the discovery and development of cyclin-dependent kinase inhibitors. Expert Opin Investig Drugs 2005; 14:457-77.

Fornier MN, Rathkopf D, Shah M et al. Phase I dose-finding study of weekly docetaxel followed by flavopiridol for patients with advanced solid tumors. Clin Cancer Res 2007; 13:5841-6.

Fry DW, Harvey PJ, Keller PR et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 2004; 3:1427-38.

Gayther SA, Song H, Ramus SJ et al. Tagging single nucleotide polymorphisms in cell cycle control genes and susceptibility to invasive epithelial ovarian cancer. Cancer Res 2007; 67:3027-35.

George S, Kasimis BS, Cogswell J et al. Phase I study of flavopiridol in combination with Paclitaxel and Carboplatin in patients with non-small-cell lung cancer. Clin Lung Cancer 2008; 9:160-5.

Grant S, Roberts JD. The use of cyclin-dependent kinase inhibitors alone or in combination with established cytotoxic drugs in cancer chemotherapy. Drug Resist Updat 2003; 6:15-26.

Grendys EC Jr, Blessing JA, Burger R, Hoffman J. A phase II evaluation of flavopiridol as second-line chemotherapy of endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 2005; 98:249-53.

Gudbjartsson DF, Walters GB, Thorleifsson G et al. Many sequence variants affecting diversity of adult human height. Nat Genet 2008; 40:609-15.

Hahntow IN, Schneller F, Oelsner M et al. Cyclin-dependent kinase inhibitor Roscovitine induces apoptosis in chronic lymphocytic leukemia cells. Leukemia 2004; 18:747-55.

Harper JW, Elledge SJ. Cdk inhibitors in development and cancer. Curr Opin Genet Dev 1996; 6:56-64.

Heath EI, Bible K, Martell RE, Adelman DC, Lorusso PM. A phase 1 study of SNS-032 (formerly BMS-387032), a potent inhibitor of cyclin-dependent kinases 2, 7 and 9 administered as a single oral dose and weekly infusion in patients withmetastatic refractory solid tumors. Invest New Drugs 2008; 26:59-65.

Hu MG, Deshpande A, Enos M et al. A requirement for cyclin-dependent kinase 6 in thymocyte development and tumorigenesis. Cancer Res 2009; 69:810-8.

Jackman KM, Frye CB, Hunger SP. Flavopiridol displays preclinical activity in acute lymphoblastic leukemia. Pediatr Blood Cancer 2008; 50:772-8.

Jayson GC, Crowther D, Prendiville J et al. A phase I trial of bryostatin 1 in patients with advanced malignancy using a 24 hour intravenous infusion. Br J Cancer 1995; 72:461-8.

Karp JE, Smith BD, Levis MJ et al. Sequential flavopiridol, cytosine arabinoside, and mitoxantrone: a phase II trial in adults with poor-risk acute myelogenous leukemia. Clin Cancer Res 2007; 13:4467-73.

Kollmann K, Heller G, Ott RG et al. C-JUN promotes BCR-ABL induced lymphoid leukemia by inhibiting methylation of the 5’ region of Cdk6. Blood 2011; 117:4065-75.

Ku GY, Ilson DH, Schwartz LH et al. Phase II trial of sequential paclitaxel and 1 h infusion of bryostatin-1 in patients with advanced esophageal cancer. Cancer Chemother Pharmacol 2008; 62:875-80.

Lettre G, Jackson AU, Gieger C et al. Identification of ten loci associated with height highlights new biological pathways in human growth. Nat Genet 2008; 40:584-91.

Malumbres M, Sotillo R, Santamaría D et al. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 2004; 118:493-504.

Mani S, Wang C, Wu K, Francis R, Pestell R. Cyclin-dependent kinase inhibitors: novel anticancer agents. Expert Opin Investig Drugs 2000; 9:1849-70.

Marzec M, Kasprzycka M, Lai R et al. Mantle cell lymphoma cells express predominantly cyclin D1a isoform and are highly sensitive to selective inhibition of CDK4 kinase activity. Blood 2006; 108:1744-50.

McClue SJ, Blake D, Clarke R et al. In vitro and in vivo antitumor properties of the cyclin dependent kinase inhibitor CYC202 (R-roscovitine). Int J Cancer 2002; 102:463-8.

Phelps MA, Lin TS, Johnson AJ et al. Clinical response and pharmacokinetics from a phase 1 study of an active dosing schedule of flavopiridol in relapsed chronic lymphocytic leukemia. Blood 2009; 113:2637-45.

Raychaudhuri S, Remmers EF, Lee AT et al. Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat Genet 2008; 40:1216-23.

Roberts JD, Smith MR, Feldman EJ et al. Phase I study of bryostatin 1 and fludarabine in patients with chronic lymphocytic leukemia and indolent (non-Hodgkin’s) lymphoma. Clin Cancer Res 2006; 12:5809-16.

Shah MA, Kortmansky J, Motwani M et al. A phase I clinical trial of the sequential combination of irinotecan followed by flavopiridol. Clin Cancer Res 2005; 11:3836-45.

Siegel-Lakhai WS, Zandvliet AS, Huitema AD et al. A dose-escalation study of indisulam in combination with capecitabine (Xeloda) in patients with solid tumours. Br J Cancer 2008; 98:1320-6.

Smyth JF, Aamdal S, Awada A et al. Phase II study of E7070 in patients with metastatic melanoma. Ann Oncol 2005; 16:158-61.

Terret C, Zanetta S, Roché H et al. Phase I clinical and pharmacokinetic study of E7070, a novel sulfonamide given as a 5-day continuous infusion repeated every 3 weeks in patients with solid tumours. A study by the EORTC Early Clinical Study Group (ECSG). Eur J Cancer 2003; 39:1097-104.

Toogood PL, Harvey PJ, Repine JT et al. Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J Med Chem 2005; 48:2388-406.

VanderWel SN, Harvey PJ, McNamara DJ et al. Pyrido[2,3-d]pyrimidin-7-ones as specific inhibitors of cyclin-dependent kinase 4. J Med Chem 2005; 48:2371-87.

Weedon MN, Lango H, Lindgren CM et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet 2008; 40:575-83.

CDKN2A (cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4))

Abdel-Rahman MH, Pilarski R, Massengill JB, Christopher BN, Noss R, Davidorf FH. Melanoma candidate genes CDKN2A/p16/INK4A, p14ARF, and CDK4 sequencing in patients with uveal melanoma with relative high-risk for hereditary cancer predisposition. Melanoma Res 2011; 21:175-9.

Boquoi A, Chen T, Enders GH. Chemoprevention of mouse intestinal tumorigenesis by the cyclin-dependent kinase inhibitor SNS-032. Cancer Prev Res 2009; 2:800-6.

Brock MV, Hooker CM, Ota-Machida E et al. DNA methylation markers and early recurrence in stage I lung cancer. N Engl J Med 2008; 358:1118-28.

Caldas C, Hahn SA, da Costa LT et al. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet 1994; 8:27-32.

Cust AE, Harland M, Makalic E et al. Melanoma risk for CDKN2A mutation carriers who are relatives of population-based case carriers in Australia and the UK. J Med Genet 2011; 48:266-72.

Dracopoli NC, Fountain JW. CDKN2 mutations in melanoma. Cancer Surv 1996; 26:115-32.

Gayther SA, Song H, Ramus SJ et al. Tagging single nucleotide polymorphisms in cell cycle control genes and susceptibility to invasive epithelial ovarian cancer. Cancer Res 2007; 67:3027-35.

Goldstein AM. Familial melanoma, pancreatic cancer and germline CDKN2A mutations. Hum Mutat 2004; 23:630.

Helgadottir A, Thorleifsson G, Magnusson KP et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet 2008; 40:217-24.

Kaune KM, Neumann C, Hallermann C, Haller F, Schön MP, Middel P. Simultaneous aberrations of single CDKN2A network components and a high Rb phosphorylation status can differentiate subgroups of primary cutaneous B-cell lymphomas. Exp Dermatol 2011; 20:331-5.

Kumar B, Cordell KG, Lee JS et al. EGFR, p16, HPV Titer, Bcl-xL and p53, sex, and smoking as indicators of response to therapy and survival in oropharyngeal cancer. J Clin Oncol 2008; 26:3128-37.

Liu Q, Yan YX, McClure M, Nakagawa H, Fujimura F, Rustgi AK. MTS-1 (CDKN2) tumor suppressor gene deletions are a frequent event in esophagus squamous cancer and pancreatic adenocarcinoma cell lines. Oncogene 1995; 10:619-22.

Moore AF, Jablonski KA, McAteer JB et al. Extension of type 2 diabetes genome-wide association scan results in the diabetes prevention program. Diabetes 2008; 57:2503-10.

Ogawa S, Hirano N, Sato N et al. Homozygous loss of the cyclin-dependent kinase 4-inhibitor (p16) gene in human leukemias. Blood 1994; 84:2431-5.

Serrano J, Goebel SU, Peghini PL, Lubensky IA, Gibril F, Jensen RT. Alterations in the p16INK4a/CDKN2A tumor suppressor gene in gastrinomas. J Clin Endocrinol Metab 2000; 85:4146-56.

Shete S, Hosking FJ, Robertson LB et al. Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet 2009; 41:899-904.

Williamson MP, Elder PA, Shaw ME, Devlin J, Knowles MA. p16 (CDKN2) is a major deletion target at 9p21 in bladder cancer. Hum Mol Genet 1995; 4:1569-77.

Zhang GS, Liu DS, Dai CW, Li RJ. Antitumor effects of celecoxib on K562 leukemia cells are mediated by cell-cycle arrest, caspase-3 activation, and downregulation of Cox-2 expression and are synergistic with hydroxyurea or imatinib. Am J Hematol 2006; 81:242-55.

CES1 (carboxylesterase 1)

Azrak RG, Yu J, Pendyala L et al. Irinotecan pharmacokinetic and pharmacogenomic alterations induced by methylselenocysteine in human head and neck xenograft tumors. Mol Cancer Ther 2005; 4:843-54.

Sai K, Saito Y, Tatewaki N et al. Association of carboxylesterase 1A genotypes with irinotecan pharmacokinetics in Japanese cancer patients. Br J Clin Pharmacol 2010; 70:222-33.

Yamada S, Richardson K, Tang M et al. Genetic variation in carboxylesterase genes and susceptibility to isoniazid-induced hepatotoxicity. Pharmacogenomics J 2010; 10:524-36.

Zhu HJ, Patrick KS, Yuan HJ et al. Two CES1 gene mutations lead to dysfunctional carboxylesterase 1 activity in man: clinical significance and molecular basis. Am J Hum Genet 2008; 82:1241-8.

CES2 (carboxylesterase 2)

Caronia D, Martin M, Sastre J et al. A polymorphism in the cytidine deaminase promoter predicts severe capecitabine-induced Hand-Foot syndrome. Clin Cancer Res 2011; 17:2006-13.

Kim SR, Nakamura T, Saito Y et al. Twelve novel single nucleotide polymorphisms in the CES2 gene encoding human carboxylesterase 2 (hCE-2). Drug Metab Pharmacokinet 2003; 18:327-32.

Wu MH, Chen P, Wu X et al. Determination and analysis of single nucleotide polymorphisms and haplotype structure of the human carboxylesterase 2 gene. Pharmacogenetics 2004; 14:595-605.

CETP (cholesteryl ester transfer protein, plasma)

Akita H, Chiba H, Tsuchihashi K et al. Cholesteryl ester transfer protein gene: two common mutations and their effect on plasma high-density lipoprotein cholesterol content. J Clin Endocr Metab 1994; 79:1615-8.

Anagnostopoulou K, Kolovou G, Kostakou P, Mihas C, Mikhailidis D, Cokkinos DV. Pharmacogenetic study of cholesteryl ester transfer protein gene and simvastatin treatment in hypercholesterolaemic subjects. Expert Opin Pharmacother 2007; 8:2459-63.

Barzilai N, Atzmon G, Derby CA, Bauman JM, Lipton RB. A genotype of exceptional longevity is associated with preservation of cognitive function. Neurology 2006; 67:2170-5.

Borggreve SE, Hillege HL, Wolffenbuttel BHR et al. The effect of cholesterol ester transfer protein -629C-A promoter polymorphism on high-density lipoprotein cholesterol is dependent on serum triglycerides. J Clin Endocrinol Metab 2005; 90:4198-202.

Brousseau ME, Schaefer EJ, Wolfe ML et al. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. New Eng J Med 2004; 350:1505-15.

Decano JL, Viereck JC, McKee AC, Hamilton JA, Ruiz-Opazo N, Herrera VL. Early-life sodium exposure unmasks susceptibility to stroke in hyperlipidemic, hypertensive heterozygous Tg25 rats transgenic for human cholesteryl ester transfer protein. Circulation 2009; 119:1501-9.

Kathiresan S, Melander O, Anevski D et al. Polymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med 2008; 358:1240-9.

Klerkx AHEM, Tanck MWT, Kastelein JJP et al. Haplotype analysis of the CETP gene: not TaqIB, but the closely linked -629C-A polymorphism and a novel promoter variant are independently associated with CETP concentration. Hum Molec Genet 2003; 12:111-23.

Kuivenhoven JA, Jukema JW, Zwinderman AH et al. The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. New Eng J Med 1998; 338:86-93.

Mohrschladt MF, van der Sman-de Beer F, Hofman MK et al. TaqIB polymorphism in CETP gene: the influence on incidence of cardiovascular disease in statin-treated patients with familial hypercholesterolemia. Eur J Hum Genet 2005; 13:877-82.

Salerno AG, Patrício PR, Berti JA, Oliveira HC. Cholesteryl ester transfer protein (CETP) increases postprandial triglyceridaemia and delays triacylglycerol plasma clearance in transgenic mice. Biochem J 2009; 419:629-34.

Spirin V, Schmidt S, Pertsemlidis A, Cooper RS, Cohen JC, Sunyaev SR. Common single-nucleotide polymorphisms act in concert to affect plasma levels of high-density lipoprotein cholesterol. Am J Hum Genet 2007; 81:1298-303.

Zhong S, Sharp DS, Grove JS et al. Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J Clin Invest 1996; 97:2917-23.

CFH (complement factor H)

Ault BH, Schmidt BZ, Fowler NL et al. Human factor H deficiency. Mutations in framework cysteine residues and block in H protein secretion and intracellular catabolism. J Biol Chem 1997; 272:25168-75.

Brantley MA Jr, Fang AM, King JM, Tewari A, Kymes SM, Shiels A. Association of complement factor H and LOC387715 genotypes with response of exudative age-related macular degeneration to intravitreal bevacizumab. Ophthalmology 2007; 114:2168-73.

Gigante PR, Kotchetkov IS, Kellner CP et al. Polymorphisms in complement component 3 (C3F) and complement factor H (Y402H) increase the risk of postoperative neurocognitive dysfunction following carotid endarterectomy. J Neurol Neurosurg Psychiatry 2011; 82:247-53.

Klein ML, Francis PJ, Rosner B et al. CFH and LOC387715/ARMS2 genotypes and treatment with antioxidants and zinc for age-related macular degeneration. Ophthalmology 2008; 115:1019-25.

Kloeckener-Gruissem B, Barthelmes D, Labs S et al. Genetic association with response to intravitreal ranibizumab in neovascular AMD patients. Invest Ophthalmol Vis Sci 2011; 52:4694-702.

Lee AY, Raya AK, Kymes SM, Shiels A, Brantley MA Jr. Pharmacogenetics of complement factor H (Y402H) and treatment of exudative age-related macular degeneration with ranibizumab. Br J Ophthalmol 2009; 93:610-3.

Manuelian T, Hellwage J, Meri S et al. Mutations in factor H reduce binding affinity to C3b and heparin and surface attachment to endothelial cells in hemolytic uremic syndrome. J Clin Invest 2003; 111:1181-90.

Nakanishi H, Yamashiro K, Yamada R et al. Joint effect of cigarette smoking and CFH and LOC387715/HTRA1 polymorphisms on polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci 2010; 51:6183-7.

Pickering MC, de Jorge EG, Martinez-Barricarte R et al. Spontaneous hemolytic uremic syndrome triggered by complement factor H lacking surface recognition domains. J Exp Med 2007; 204:1249-56.

CFTR (cystic fibrosis transmembrane conductance regulator (ATP-binding cassette sub-family C, member 7))

Chillón M, Casals T, Mercier B et al. Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N Engl J Med 1995; 332:1475-80.

Daly AK, Salh BS, Bilton D et al. Deficient nifedipine oxidation: a rare inherited trait associated with cystic fibrosis kindreds. Pharmacogenetics 1992; 2:19-24.

Eidelman O, Zhang J, Srivastava M, Pollard HB. Cystic fibrosis and the use of pharmacogenomics to determine surrogate endpoints for drug discovery. Am J Pharmacogenomics 2001; 1:223-38.

Hamilton JW. Gentamicin in pharmacogenetic approach to treatment of cystic fibrosis. Lancet 2001; 358:2014-6.

Kearns GL. Hepatic drug metabolism in cystic fibrosis: recent developments and future directions. Ann Pharmacother 1993; 27:74-9.

Labro MT, Babin-Chevaye C, Mergey M. Accumulation of azithromycin and roxithromycin in tracheal epithelial fetal cell lines expressing wild type or mutated cystic fibrosis transmembrane conductance regulator protein (CFTR). J Chemother 2005; 17:385-92.

Liu Y, Wang Y, Jiang Y et al. Mild processing defect of porcine DeltaF508-CFTR suggests that DeltaF508 pigs may not develop cystic fibrosis disease. Biochem Biophys Res Commun 2008; 373:113-8.

Pollard HB, Eidelman O, Jacobson KA, Srivastava M. Pharmacogenomics of cystic fibrosis. Mol Interv 2001; 1:54-63.

Sangiuolo F, D’Apice MR, Gambardella S, Di Daniele N, Novelli G. Toward the pharmacogenomics of cystic fibrosis-an update. Pharmacogenomics 2004; 5:861-78.

van de Vosse E, de Visser AW, Al-Attar S, Vossen R, Ali S, van Dissel JT. Distribution of CFTR variations in an Indonesian enteric fever cohort. Clin Infect Dis 2010; 50:1231-7.

Wieczorek SJ, Tsongalis GJ. Pharmacogenomics: will it change the field of medicine? Clin Chim Acta 2001; 308:1-8.

Wu L, Williams PM, Koch WH. Clinical applications of microarray-based diagnostic tests. Biotechniques 2005; 39:577-82.

Zeitlin PL, Diener-West M, Rubenstein RC, Boyle MP, Lee CK, Brass-Ernst L. Evidence of CFTR function in cystic fibrosis after systemic administration of 4-phenylbutyrate. Mol Ther 2002; 6:119-26.

Zhou L, Dey CR, Wert SE, DuVall MD, Frizzell RA, Whitsett JA. Correction of lethal intestinal defect in a mouse model of cystic fibrosis by human CFTR. Science 1994; 266:1705-8.

CHAT (choline O-acetyltransferase)

Bielarczyk H, Tomaszewicz M, Madziar B, Cwikowska J, Pawełczyk T, Szutowicz A. Relationships between cholinergic phenotype and acetyl-CoA level in hybrid murine neuroblastoma cells of septal origin. J Neurosci Res 2003; 73:717-21.

Harold D, Macgregor S, Patterson CE et al. A single nucleotide polymorphism in CHAT influences response to acetylcholinesterase inhibitors in Alzheimer’s disease. Pharmacogenet Genomics 2006; 16:75-7.

Ohno K, Tsujino A, Brengman JM et al. Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc Natl Acad Sci USA 2001; 98:2017-22.

Proschowsky HF, Flagstad A, Cirera S, Joergensen CB, Fredholm M. Identification of a mutation in the CHAT gene of Old Danish Pointing Dogs affected with congenital myasthenic syndrome. J Hered 2007; 98:539-43.

CHDH (choline dehydrogenase)

da Costa KA, Kozyreva OG, Song J, Galanko JA, Fischer LM, Zeisel SH. Common genetic polymorphisms affect the human requirement for the nutrient choline. FASEB J 2006; 20:1336-44.

Mostowska A, Biedziak B, Dunin-Wilczynska I, Komorowska A, Jagodzinski PP. Polymorphisms in CHDH gene and the risk of tooth agenesis. Birth Defects Res A Clin Mol Teratol 2011; 91:169-76.

Schläwicke Engström K, Nermell B, Concha G, Strömberg U, Vahter M, Broberg K. Arsenic metabolism is influenced by polymorphisms in genes involved in one-carbon metabolism and reduction reactions. Mutat Res 2009; 667:4-14.

CHRM1 (cholinergic receptor, muscarinic 1)

Dean B, Soulby A, Evin GM, Scarr E. Levels of [(3)H]pirenzepine binding in Brodmann’s area 6 from subjects with schizophrenia is not associated with changes in the transcription factor SP1 or BACE1. Schizophr Res 2008; 106:229-36.

Kitazawa T, Asakawa K, Nakamura T et al. M3 muscarinic receptors mediate positive inotropic responses in mouse atria: a study with muscarinic receptor knockout mice. J Pharmacol Exp Ther 2009; 330:487-93.

Liu HC, Hong CJ, Liu TY, Chi CW, Tsai SJ. Association analysis for the muscarinic M1 receptor genetic polymorphisms and Alzheimer’s disease. Dement Geriatr Cogn Disord 2005; 19:42-5.

Lou XY, Ma JZ, Payne TJ, Beuten J, Crew KM, Li MD. Gene-based analysis suggests association of the nicotinic acetylcholine receptor beta1 subunit (CHRNB1) and M1 muscarinic acetylcholine receptor (CHRM1) with vulnerability for nicotine dependence. Hum Genet 2006; 120:381-9.

Maeda Y, Hizawa N, Jinushi E et al. Polymorphisms in the muscarinic receptor 1 gene confer susceptibility to asthma in Japanese subjects. Am J Respir Crit Care Med 2006; 174:1119-24.

Weiner DM, Goodman MW, Colpitts TM et al. Functional screening of drug target genes: m1 muscarinic acetylcholine receptor phenotypes in degenerative dementias. Am J Pharmacogenomics 2004; 4:119-28.

CHRM2 (cholinergic receptor, muscarinic 2)

Hautala AJ, Rankinen T, Kiviniemi AM et al. Heart rate recovery after maximal exercise is associated with acetylcholine receptor M2 (CHRM2) gene polymorphism. Am J Physiol Heart Circ Physiol 2006; 29:459-66.

Hautala AJ, Tulppo MP, Kiviniemi AM et al. Acetylcholine receptor M2 gene variants, heart rate recovery, and risk of cardiac death after an acute myocardial infarction. Ann Med 2009; 41:197-207.

Hegde SS. Muscarinic receptors in the bladder: from basic research to therapeutics. Br J Pharmacol 2006; 147 Suppl 2:80-7.

Jung MH, Park BL, Lee BC et al. Association of CHRM2 polymorphisms with severity of alcohol dependence. Genes Brain Behav 2011; 10:253-6.

Kitazawa T, Asakawa K, Nakamura T et al. M3 muscarinic receptors mediate positive inotropic responses in mouse atria: a study with muscarinic receptor knockout mice. J Pharmacol Exp Ther 2009; 330:487-93.

Luo X, Kranzler HR, Zuo L, Wang S, Blumberg HP, Gelernter J. CHRM2 gene predisposes to alcohol dependence, drug dependence and affective disorders: results from an extended case-control structured association study. Hum Mol Genet 2005; 14:2421-34.

Mobascher A, Rujescu D, Mittelstrass K et al. Association of a variant in the muscarinic acetylcholine receptor 2 gene (CHRM2) with nicotine addiction. Am J Med Genet B Neuropsychiatr Genet 2010; 153:684-90.

Szczepankiewicz A, Breborowicz A, Sobkowiak P, Kramer L, Popiel A. Association of A/T polymorphism of the CHRM2 gene with bronchodilator response to ipratropium bromide in asthmatic children. Pneumonol Alergol Pol 2009; 77:5-10.

CHRM3 (cholinergic receptor, muscarinic 3)

Guo Y, Traurig M, Ma L et al. CHRM3 gene variation is associated with decreased acute insulin secretion and increased risk for early-onset type 2 diabetes in Pima Indians. Diabetes 2006; 55:3625-9.

Hegde SS. Muscarinic receptors in the bladder: from basic research to therapeutics. Br J Pharmacol 2006; 147 Suppl 2:80-7.

Kitazawa T, Asakawa K, Nakamura T et al. M3 muscarinic receptors mediate positive inotropic responses in mouse atria: a study with muscarinic receptor knockout mice. J Pharmacol Exp Ther 2009; 330:487-93.

Matsui M, Araki Y, Karasawa H, Matsubara N, Taketo MM, Seldin MF. Mapping of five subtype genes for muscarinic acetylcholine receptor to mouse chromosomes. Genes Genet Syst 1999; 74:15-21.

CHRNA1 (cholinergic receptor, nicotinic, alpha 1 (muscle))

Abicht A, Lochmüller H. Congenital myasthenic syndromes. In: Pagon RA, Bird TC, Dolan CR, Stephens K (Eds). GeneReviews. University of Washington, Seattle, 1993-2003. Available from: http://www. ncbi. nlm. nih. gov/books/NBK1168/

Giraud M, Vandiedonck C, Garchon HJ. Genetic factors in autoimmune myasthenia gravis. Ann N Y Acad Sci 2008; 1132:180-92.

Michalk A, Stricker S, Becker J et al. Acetylcholine receptor pathway mutations explain various fetal akinesia deformation sequence disorders. Am J Hum Genet 2008; 82:464-76.

Vogt J, Harrison BJ, Spearman H et al. Mutation analysis of CHRNA1, CHRNB1, CHRND, and RAPSN genes in multiple pterygium syndrome/fetal akinesia patients. Am J Hum Genet 2008; 82:222-7.

CHRNA4 (cholinergic receptor, nicotinic, alpha 4)

Breitling LP, Dahmen N, Mittelstraß K et al. Association of nicotinic acetylcholine receptor subunit alpha4 polymorphisms with nicotine dependence in 5500 Germans. Pharmacogenomics J 2009; 19:657-9.

Feng Y, Niu T, Xing H et al. A common haplotype of the nicotine acetylcholine receptor alpha 4 subunit gene is associated with vulnerability to nicotine addiction in men. Am J Hum Genet 2004; 75:112-21.

Kishi T, Ikeda M, Kitajima T et al. Alpha4 and beta2 subunits of neuronal nicotinic acetylcholine receptor genes are not associated with methamphetamine-use disorder in the Japanese population. Ann N Y Acad Sci 2008; 1139:70-82.

Kishi T, Ikeda M, Kitajima T et al. Genetic association analysis of tagging SNPs in alpha4 and beta2 subunits of neuronal nicotinic acetylcholine receptor genes (CHRNA4 and CHRNB2) with schizophrenia in the Japanese population. J Neural Transm 2008; 115:1457-61.

Rozycka A, Steinborn B, Trzeciak WH. The 1674+11C>T polymorphism of CHRNA4 is associated with juvenile myoclonic epilepsy. Seizure 2009; 18:601-3.

CHRNA5 (cholinergic receptor, nicotinic, alpha 5)

Falvella FS, Galvan A, Frullanti E et al. Transcription deregulation at the 15q25 locus in association with lung adenocarcinoma risk. Clin Cancer Res 2009; 15:1837-42.

Hung RJ, McKay JD, Gaborieau V et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 2008; 452:633-7.

Petrovsky N, Quednow BB, Ettinger U et al. Sensorimotor gating is associated with CHRNA3 polymorphisms in schizophrenia and healthy volunteers. Neuropsychopharmacology 2010; 35:1429-39.

Pillai SG, Kong X, Edwards LD et al. Loci identified by genome-wide association studies influence different disease-related phenotypes in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 182:1498-505.

Smith RM, Alachkar H, Papp AC et al. Nicotinic α5 receptor subunit mRNA expression is associated with distant 5’ upstream polymorphisms. Eur J Hum Genet 2011; 19:76-83.

Stevens VL, Bierut LJ, Talbot JT et al. Nicotinic receptor gene variants influence susceptibility to heavy smoking. Cancer Epidemiol Biomarkers Prev 2008; 17:3517-25.

Wang J, Spitz MR, Amos CI, Wilkinson AV, Wu X, Shete S. Mediating effects of smoking and chronic obstructive pulmonary disease on the relation between the CHRNA5-A3 genetic locus and lung cancer risk. Cancer 2010; 116:3458-62.

Weiss RB, Baker TB, Cannon DS et al. A candidate gene approach identifies the CHRNA5-A3-B4 region as a risk factor for age-dependent nicotine addiction. PLoS Genet 2008. doi:10. 1371/journal. pgen. 1000125.

CHRNB2 (cholinergic receptor, nicotinic, beta 2 (neuronal))

Ehringer MA, Clegg HV, Collins AC et al. Association of the neuronal nicotinic receptor beta2 subunit gene (CHRNB2) with subjective responses to alcohol and nicotine. Am J Med Genet B Neuropsychiatr Genet 2007; 144:596-604.

Hoft NR, Stitzel JA, Hutchison KE, Ehringer MA. CHRNB2 promoter region: association with subjective effects to nicotine and gene expression differences. Genes Brain Behav 2011; 10:176-85.

Kishi T, Ikeda M, Kitajima T et al. Alpha4 and beta2 subunits of neuronal nicotinic acetylcholine receptor genes are not associated with methamphetamine-use disorder in the Japanese population. Ann N Y Acad Sci 2008; 1139:70-82.

Kishi T, Ikeda M, Kitajima T et al. Genetic association analysis of tagging SNPs in alpha4 and beta2 subunits of neuronal nicotinic acetylcholine receptor genes (CHRNA4 and CHRNB2) with schizophrenia in the Japanese population. J Neural Transm 2008; 115:1457-61.

CHST3 (carbohydrate (chondroitin 6) sulfotransferase 3)

Cortina H, Vidal J, Vallcanera A, Alberto C, Muro D, Dominguez F. Humero-spinal dysostosis. Pediatr Radiol 1979; 8:188-90.

Deeken JF, Cormier T, Price DK et al. A pharmacogenetic study of docetaxel and thalidomide in patients with castration-resistant prostate cancer using the DMET genotyping platform. Pharmacogenomics J 2010; 10:191-9.

Kozlowski KS, Celermajer JM, Tink AR. Humero-spinal dysostosis with congenital heart disease. Am J Dis Child 1974; 127:407-10.

Liu J, Chau CH, Liu H et al. Upregulation of chondroitin 6-sulphotransferase-1 facilitates Schwann cell migration during axonal growth. J Cell Sci 2006; 119:933-42.

Properzi F, Carulli D, Asher RA et al. Chondroitin 6-sulphate synthesis is up-regulated in injured CNS, induced by injury-related cytokines and enhanced in axon-growth inhibitory glia. Eur J Neurosci 2005; 21:378-90.

van Roij MH, Mizumoto S, Yamada S et al. Spondyloepiphyseal dysplasia, Omani type: further definition of the phenotype. Am J Med Genet A 2008; 146:2376-84.

Yin J, Sakamoto K, Zhang H et al. Transforming growth factor-beta1 upregulates keratan sulfate and chondroitin sulfate biosynthesis in microglias after brain injury. Brain Res 2009; 1263:10-22.

CNR1 (cannabinoid receptor 1 (brain))

Ballon N, Leroy S, Roy C et al. (AAT)n repeat in the cannabinoid receptor gene (CNR1): association with cocaine addiction in an African-Caribbean population. Pharmacogenomics J 2006; 6:126-30.

Domschke K, Dannlowski U, Ohrmann P et al. Cannabinoid receptor 1 (CNR1) gene: impact on antidepressant treatment response and emotion processing in major depression. Eur Neuropsychopharmacol 2008; 18:751-9.

El-Remessy AB, Rajesh M, Mukhopadhyay P et al. Cannabinoid 1 receptor activation contributes to vascular inflammation and cell death in a mouse model of diabetic retinopathy and a human retinal cell line. Diabetologia 2011; 54:1567-78.

Hamdani N, Tabeze JP, Ramoz N et al. The CNR1 gene as a pharmacogenetic factor for antipsychotics rather than a susceptibility gene for schizophrenia. Eur Neuropsychopharmacol 2008; 18:34-40.

Ruiz-Contreras AE, Delgado-Herrera M, García-Vaca PA et al. Involvement of the AATn polymorphism of the CNR1 gene in the efficiency of procedural learning in humans. Neurosci Lett 2011; 494:202-6.

Song D, Bandsma RH, Xiao C et al. Acute cannabinoid receptor type 1 (CB1R) modulation influences insulin sensitivity by an effect outside the central nervous system in mice. Diabetologia 2011; 54:1181-9.

Storr M, Emmerdinger D, Diegelmann J et al. The cannabinoid 1 receptor (CNR1) 1359 G/A polymorphism modulates susceptibility to ulcerative colitis and the phenotype in Crohn’s disease. PLoS One 2010. doi:10. 1371/journal. pone. 0009453.

Tiwari AK, Zai CC, Likhodi O et al. A common polymorphism in the cannabinoid receptor 1 (CNR1) gene is associated with antipsychotic-induced weight gain in Schizophrenia. Neuropsychopharmacology 2010; 35:1315-24.

Tiwari AK, Zai CC, Likhodi O et al. Association study of Cannabinoid receptor 1 (CNR1) gene in tardive dyskinesia. Pharmacogenomics J 2011. doi:10. 1038/tpj. 2010. 93.

COL1A1 (collagen, type I, alpha 1)

Bei T, Tilkeridis C, Garantziotis S et al. A novel, non-functional, COL1A1 polymorphism is not associated with lumbar disk disease in young male Greek subjects unlike that of the Sp1 site. Hormones 2008; 7:251-4.

Jin H, Evangelou E, Ioannidis JP, Ralston SH. Polymorphisms in the 5’ flank of COL1A1 gene and osteoporosis: meta-analysis of published studies. Osteoporos Int 2011; 22:911-21.

Jin H, Stewart TL, Hof RV, Reid DM, Aspden RM, Ralston S. A rare haplotype in the upstream regulatory region of COL1A1 is associated with reduced bone quality and hip fracture. J Bone Miner Res 2009; 24:448-54.

Jin H, van’t Hof RJ, Albagha OM, Ralston SH. Promoter and intron 1 polymorphisms of COL1A1 interact to regulate transcription and susceptibility to osteoporosis. Hum Mol Genet 2009; 18:2729-38.

Posthumus M, September AV, Keegan M et al. Genetic risk factors for anterior cruciate ligament ruptures: COL1A1 gene variant. Br J Sports Med 2009; 43:352-6.

Simsek M, Cetin Z, Bilgen T, Taskin O, Luleci G, Keser I. Effects of hormone replacement therapy on bone mineral density in Turkish patients with or without COL1A1 Sp1 binding site polymorphism. J Obstet Gynaecol Res 2008; 34:73-7.

COMT (catechol-O-methyltransferase)

Baune BT, Hohoff C, Berger K et al. Association of the COMT Val158Met variant with antidepressant treatment response in major depression. Neuropsychopharmacology 2008; 33:924-32.

Berrettini WH, Wileyto EP, Epstein L et al. Catechol-O-methyltransferase (COMT) gene variants predict response to bupropion therapy for tobacco dependence. Biol Psychiatry 2007; 61:111-8.

Bertolino A, Caforio G, Blasi G et al. COMT Val158Met polymorphism predicts negative symptoms response to treatment with olanzapine in schizophrenia. Schizophr Res 2007; 95:253-5.

Cohen H, Neumann L, Glazer Y, Ebstein RP, Buskila D. The relationship between a common catechol-O-methyltransferase (COMT) polymorphism val(158) met and fibromyalgia. Clin Exp Rheumatol 2009; 27(5 Suppl 56):51-6.

Comasco E, Sylvén SM, Papadopoulos FC, Sundström-Poromaa I, Oreland L, Skalkidou A. Postpartum depression symptoms: a case-control study on monoaminergic functional polymorphisms and environmental stressors. Psychiatr Genet 2011; 21:19-28.

Darbari DS, Minniti CP, Rana S, van den Anker J. Pharmacogenetics of morphine: Potential implications in sickle cell disease. Am J Hematol 2008; 83:233-6.

Ji Y, Biernacka J, Snyder K et al. Catechol O-methyltransferase pharmacogenomics and selective serotonin reuptake inhibitor response. Pharmacogenomics J 2010. doi:10. 1038/tpj. 2010. 69.

Kambur O, Männistö PT, Viljakka K et al. Stress-induced analgesia and morphine responses are changed in catechol-O-methyltransferase-deficient male mice. Basic Clin Pharmacol Toxicol 2008; 103:367-73.

Kereszturi E, Tarnok Z, Bognar E et al. Catechol-O-methyltransferase Val158Met polymorphism is associated with methylphenidate response in ADHD children. Am J Med Genet B Neuropsychiatr Genet 2008; 147:1431-5.

Kocabas NA, Faghel C, Barreto M et al. The impact of catechol-O-methyltransferase SNPs and haplotypes on treatment response phenotypes in major depressive disorder: a case-control association study. Int Clin Psychopharmacol 2010; 25:218-27.

Martínez MF, Martín XE, Alcelay LG et al. The COMT Val158 Met polymorphism as an associated risk factor for Alzheimer disease and mild cognitive impairment in APOE 4 carriers. BMC Neurosci 2009; 10:125.

Matsuda JB, Barbosa FR, Morel LJ et al. Serotonin receptor (5-HT 2A) and catechol-O-methyltransferase (COMT) gene polymorphisms: triggers of fibromyalgia? Rev Bras Reumatol 2010; 50:141-9.

Montagna P. Recent advances in the pharmacogenomics of pain and headache. Neurol Sci 2007; 28:208-12.

Sagud M, Mück-Seler D, Mihaljević-Peles A et al. Catechol-O-methyl transferase and schizophrenia. Psychiatr Danub 2010; 22:270-4.

Tchivileva IE, Lim PF, Smith SB et al. Effect of catechol-O-methyltransferase polymorphism on response to propranolol therapy in chronic musculoskeletal pain: a randomized, double-blind, placebo-controlled, crossover pilot study. Pharmacogenet Genomics 2010; 20:239-48.

Wang Q, Wang YP, Li JY, Yuan P, Yang F, Li H. Polymorphic catechol-O-methyltransferase gene, soy isoflavone intake and breast cancer in postmenopausal women: a case-control study. Chin J Cancer 2010; 29:683-8.

Weinshilboum RM. Pharmacogenomics: catechol O-methyltransferase to thiopurine S-methyltransferase. Cell Mol Neurobiol 2006; 26:539-61.

CREB1 (cAMP response element binding protein 1)

Juhasz G, Dunham JS, McKie S et al. The CREB1-BDNF-NTRK2 pathway in depression: multiple gene-cognition-environment interactions. Biol Psychiatry 2011; 69:762-71.

Kodama S, Moore R, Yamamoto Y, Negishi M. Human nuclear pregnane X receptor cross-talk with CREB to repress cAMP activation of the glucose-6-phosphatase gene. Biochem J 2007; 407:373-81.

Lemberger T, Parkitna JR, Chai M, Schütz G, Engblom D. CREB has a context-dependent role in activity-regulated transcription and maintains neuronal cholesterol homeostasis. FASEB J 2008; 22:2872-9.

Mamdani F, Alda M, Grof P, Young LT, Rouleau G, Turecki G. Lithium response and genetic variation in the CREB family of genes. Am J Med Genet B Neuropsychiatr Genet 2008; 147:500-4.

Perlis RH, Purcell S, Fava M et al. Association between treatment-emergent suicidal ideation with citalopram and polymorphisms near cyclic adenosine monophosphate response element binding protein in the STAR*D study. Arch Gen Psychiatry 2007; 64:689-97.

Zubenko GS, Hughes HB III, Stiffler JS et al. Sequence variations in CREB1 cosegregate with depressive disorders in women. Molec Psychiat 2003; 8:611-8.

CRHR1 (corticotropin releasing hormone receptor 1)

Chen AC, Manz N, Tang Y et al. Single-nucleotide polymorphisms in corticotropin releasing hormone receptor 1 gene (CRHR1) are associated with quantitative trait of event-related potential and alcohol dependence. Alcohol Clin Exp Res 2010; 34:988-96.

Dijkstra A, Koppelman GH, Vonk JM, Bruinenberg M, Schouten JP, Postma DS. Pharmacogenomics and outcome of asthma: no clinical application for long-term steroid effects by CRHR1 polymorphisms. J Allergy Clin Immunol 2008; 121:1510-3.

Grabe HJ, Schwahn C, Appel K et al. Childhood maltreatment, the corticotropin-releasing hormone receptor gene and adult depression in the general population. Am J Med Genet B Neuropsychiatr Genet 2010; 153:1483-93.

Keck ME, Kern N, Erhardt A et al. Combined effects of exonic polymorphisms in CRHR1 and AVPR1B genes in a case/control study for panic disorder. Am J Med Genet B Neuropsychiatr Genet 2008; 147:1196-204.

Kim WJ, Sheen SS, Kim TH et al. Association between CRHR1 polymorphism and improved lung function in response to inhaled corticosteroid in patients with COPD. Respirology 2009; 14:260-3.

Ressler KJ, Bradley B, Mercer KB et al. Polymorphisms in CRHR1 and the serotonin transporter loci: gene x gene x environment interactions on depressive symptoms. Am J Med Genet B Neuropsychiatr Genet 2010; 153:812-24.

Schierloh A, Deussing J, Wurst W, Zieglgänsberger W, Rammes G. Corticotropin-releasing factor (CRF) receptor type 1-dependent modulation of synaptic plasticity. Neurosci Lett 2007; 416:82-6.

Schmidt MV, Deussing JM, Oitzl MS et al. Differential disinhibition of the neonatal hypothalamic- pituitary-adrenal axis in brain-specific CRH receptor 1-knockout mice. Eur J Neurosci 2006; 24:2291-8.

Tantisira KG, Lake S, Silverman ES et al. Corticosteroid pharmacogenetics: association of sequence variants in CRHR1 with improved lung function in asthmatics treated with inhaled corticosteroids. Hum Mol Genet 2004; 13:1353-9.

CRHR2 (corticotropin releasing hormone receptor 2)

Gu X, Qi P, Zhou F et al. An intronic polymorphism in the corticotropin-releasing hormone receptor 2 gene increases susceptibility to HBV-related hepatocellular carcinoma in Chinese population. Hum Genet 2010; 127:75-81.

Keck ME, Kern N, Erhardt A et al. Combined effects of exonic polymorphisms in CRHR1 and AVPR1B genes in a case/control study for panic disorder. Am J Med Genet B Neuropsychiatr Genet 2008; 147:1196-204.

Poon AH, Tantisira KG, Litonjua AA et al. Association of corticotropin-releasing hormone receptor-2 genetic variants with acute bronchodilator response in asthma. Pharmacogenet Genomics 2008; 18:373-82.

Tezval H, Jurk S, Atschekzei F, Serth J, Kuczyk MA, Merseburger AS. The involvement of altered corticotropin releasing factor receptor 2 expression in prostate cancer due to alteration of anti-angiogenic signaling pathways. Prostate 2009; 69:443-8.

CRP (C-reactive protein, pentraxin-related)

Bahia L, Aguiar LG, Villela N, Bottino D, Godoy-Matos AF, Bouskela E. Effects of rosiglitazone on endothelial function in non-diabetic subjects with metabolic syndrome. Arq Bras Cardiol 2006; 86:366-73.

Carlson CS, Aldred SF, Lee PK et al. Polymorphisms within the C-reactive protein (CRP) promoter region are associated with plasma CRP levels. Am J Hum Genet 2005; 77:64-77.

Danenberg HD, Grad E, Swaminathan RV et al. Neointimal formation is reduced after arterial injury in human crp transgenic mice. Atherosclerosis 2008; 201:85-91.

Dornbrook-Lavender KA, Joy MS, Denu-Ciocca CJ, Chin H, Hogan SL, Pieper JA. Effects of atorvastatin on low-density lipoprotein cholesterol phenotype and C-reactive protein levels in patients undergoing long-term dialysis. Pharmacotherapy 2005; 25:335-44.

Gaysina D, Pierce M, Richards M, Hotopf M, Kuh D, Hardy R. Association between adolescent emotional problems and metabolic syndrome: The modifying effect of C-reactive protein gene (CRP) polymorphisms. Brain Behav Immun 2011; 25:750-8.

Grocott HP, White WD, Morris RW et al. Genetic polymorphisms and the risk of stroke after cardiac surgery. Stroke 2005; 36:1854-8.

Kuhlenbaeumer G, Huge A, Berger K et al. Genetic variants in the C-reactive protein gene are associated with microangiopathic ischemic stroke. Cerebrovasc Dis 2010; 30:476-82.

Mendoza-Carrera F, Ramírez-López G, Ayala-Martínez NA, García-Zapién AG, Flores-Martínez SE, Sánchez-Corona J. Influence of CRP, IL6, and TNFA gene polymorphisms on circulating levels of C-reactive protein in Mexican adolescents. Arch Med Res 2010; 41:472-7.

Morita A, Nakayama T, Doba N, Hinohara S, Soma M. Polymorphism of the C-reactive protein (CRP) gene is related to serum CRP Level and arterial pulse wave velocity in healthy elderly Japanese. Hypertens Res 2006; 29:323-31.

Nagatomo Y, Yoshikawa T, Kohno T et al. Effects of beta-blocker therapy on high sensitivity c-reactive protein, oxidative stress, and cardiac function in patients with congestive heart failure. J Card Fail 2007; 13:365-71.

Rhodes B, Morris DL, Subrahmanyan L et al. Fine-mapping the genetic basis of CRP regulation in African Americans: a Bayesian approach. Hum Genet 2008; 123:633-42.

Russell AI, Cunninghame Graham DS, Shepherd C et al. Polymorphism at the C-reactive protein locus influences gene expression and predisposes to systemic lupus erythematosus. Hum Mol Genet 2004; 13:137-47.

St Germaine CG, Bogaty P, Boyer L, Hanley J, Engert JC, Brophy JM. Genetic polymorphisms and the cardiovascular risk of non-steroidal anti-inflammatory drugs. Am J Cardiol 2010; 105:1740-5.

Teoh H, Quan A, Lovren F et al. Impaired endothelial function in C-reactive protein overexpressing mice. Atherosclerosis 2008; 201:318-25.

Verma S, Li SH, Badiwala MV et al. Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein. Circulation 2002; 105:1890-6.

Wolford JK, Gruber JD, Ossowski VM et al. A C-reactive protein promoter polymorphism is associated with type 2 diabetes mellitus in Pima Indians. Mol Genet Metab 2003; 78:136-44.

Yang SH, Huang CJ, Chang SC, Lin JK. Association of C-reactive protein gene polymorphisms and colorectal cancer. Ann Surg Oncol 2011; 18:1907-15.

Zacho J, Tybjaerg-Hansen A, Jensen JS, Grande P, Sillesen H, Nordestgaard BG. Genetically elevated C-reactive protein and ischemic vascular disease. N Engl J Med 2008; 359:1897-908.

CSF1R (colony stimulating factor 1 receptor)

Bartram CR. Molecular genetic aspects of myelodysplastic syndromes. Hematol Oncol Clin North Am 1992; 6:557-70.

Chambers SK, Ivins CM, Carcangiu ML. Plasminogen activator inhibitor-1 is an independent poor prognostic factor for survival in advanced stage epithelial ovarian cancer patients. Int J Cancer 1998; 79:449-54.

Chambers SK, Kacinski BM, Ivins CM, Carcangiu ML. Overexpression of epithelial macrophage colony-stimulating factor (CSF-1) and CSF-1 receptor: a poor prognostic factor in epithelial ovarian cancer, contrasted with a protective effect of stromal CSF-1. Clin Cancer Res 1997; 3:999-1007.

Dewar AL, Cambareri AC, Zannettino AC et al. Macrophage colony-stimulating factor receptor c-fms is a novel target of imatinib. Blood 2005; 105:3127-32.

Eisenmann KM, Dykema KJ, Matheson SF et al. 5q- myelodysplastic syndromes: chromosome 5q genes direct a tumor-suppression network sensing actin dynamics. Oncogene 2009; 28:3429-41.

Ide H, Seligson DB, Memarzadeh S et al. Expression of colony-stimulating factor 1 receptor during prostate development and prostate cancer progression. Proc Natl Acad Sci USA 2002; 99:14404-9.

Pillai MM, Hayes B, Torok-Storb B. Inducible transgenes under the control of the hCD68 promoter identifies mouse macrophages with a distribution that differs from the F4/80 – and CSF-1R-expressing populations. Exp Hematol 2009; 37:1387-92.

Sapi E. The role of CSF-1 in normal physiology of mammary gland and breast cancer: an update. Exp Biol Med 2004; 229:1-11.

Shin EK, Lee SH, Cho SH et al. Association between colony-stimulating factor 1 receptor gene polymorphisms and asthma risk. Hum Genet 2010; 128:293-302.

Stephenson J, Mufti GJ, Yoshida Y. Myelodysplastic syndromes: from morphology to molecular biology. Part II. The molecular genetics of myelodysplasia. Int J Hematol 1993; 57:99-112.

Taylor JR, Brownlow N, Domin J, Dibb NJ. FMS receptor for M-CSF (CSF-1) is sensitive to the kinase inhibitor imatinib and mutation of Asp-802 to Val confers resistance. Oncogene 2006; 25:147-51.

Toy EP, Chambers JT, Kacinski BM, Flick MB, Chambers SK. The activated macrophage colony-stimulating factor (CSF-1) receptor as a predictor of poor outcome in advanced epithelial ovarian carcinoma. Gynecol Oncol 2001; 80:194-200.

Zapata-Velandia A, Ng SS, Brennan RF et al. Association of the T allele of an intronic single nucleotide polymorphism in the colony stimulating factor 1 receptor with Crohn’s disease: a case-control study. J Immune Based Ther Vaccines 2004; 2:6.

CSNK1E (casein kinase 1, epsilon)

Bryant CD, Graham ME, Distler MG et al. A role for casein kinase 1 epsilon in the locomotor stimulant response to methamphetamine. Psychopharmacology 2009; 203:703-11.

Chu LW, Zhu Y, Yu K et al. Correlation between circadian gene variants and serum levels of sex steroids and insulin-like growth factor-I. Cancer Epidemiol Biomarkers Prev 2008; 17:3268-73.

Kotaka T, Ujike H, Morita Y et al. Association study between casein kinase 1 epsilon gene and methamphetamine dependence. Ann NY Acad Sci 2008; 1139:43-8.

Levran O, Londono D, O’Hara K et al. Genetic susceptibility to heroin addiction: a candidate gene association study. Genes Brain Behav 2008; 7:720-9.

Takano A, Uchiyama M, Kajimura N et al. A missense variation in human casein kinase I epsilon gene that induces functional alteration and shows an inverse association with circadian rhythm sleep disorders. Neuropsychopharmacology 2004; 29:1901-9.

Veenstra-VanderWeele J, Qaadir A, Palmer AA, Cook EH Jr, de Wit H. Association between the casein kinase 1 epsilon gene region and subjective response to D-amphetamine. Neuropsychopharmacology 2006; 31:1056-63.

Wang X, Goode EL, Fredericksen ZS et al. Association of genetic variation in genes implicated in the beta-catenin destruction complex with risk of breast cancer. Cancer Epidemiol Biomarkers Prev 2008; 17:2101-8.

CTLA4 (cytotoxic T-lymphocyte-associated protein 4)

Allison JP, Krummel MF. The yin and yang of T cell costimulation. Science 1995; 270:932-3.

Azizi E, Massoud A, Amirzargar AA et al. Association of CTLA4 gene polymorphism in Iranian patients with ankylosing spondylitis. J Clin Immunol 2010; 30:268-71.

Berce V, Potocnik U. Functional polymorphism in CTLA4 gene influences the response to therapy with inhaled corticosteroids in Slovenian children with atopic asthma. Biomarkers 2010; 15:158-66.

Brozzetti A, Marzotti S, Tortoioli C et al. Cytotoxic T lymphocyte antigen-4 Ala17 polymorphism is a genetic marker of autoimmune adrenal insufficiency: Italian association study and meta-analysis of European studies. Eur J Endocrinol 2010; 162:361-9.

Carr EJ, Niederer HA, Williams J et al. Confirmation of the genetic association of CTLA4 and PTPN22 with ANCA-associated vasculitis. BMC Med Genet 2009; 10:121.

Daly AK, Day CP, Donaldson PT. Polymorphisms in immunoregulatory genes: towards individualized immunosuppressive therapy? Am J Pharmacogenomics 2002; 2:13-23.

Djilali-Saiah I, Schmitz J, Harfouch-Hammoud E, Mougenot JF, Bach JF, Caillat-Zucman S. CTLA-4 gene polymorphism is associated with predisposition to coeliac disease. Gut 1998; 43:187-9.

Donner H, Braun J, Seidl C et al. Codon 17 polymorphism of the cytotoxic T lymphocyte antigen 4 gene in Hashimoto’s thyroiditis and Addison’s disease. J Clin Endocrinol Metab 1997; 82:4130-2.

Favis R, Sun Y, van de Velde H et al. Genetic variation associated with bortezomib-induced peripheral neuropathy. Pharmacogenet Genomics 2011; 21:121-9.

Heward JM, Allahabadia A, Armitage M et al. The development of Graves’ disease and the CTLA-4 gene on chromosome 2q33. J Clin Endocrinol Metab 1999; 84:2398-401.

Hradsky O, Dusatkova P, Lenicek M et al. The CTLA4 variants may interact with the IL23R- and NOD2-conferred risk in development of Crohn’s disease. BMC Med Genet 2010; 11:91.

Kim HJ, Jeong KH, Lee SH et al. Polymorphisms of the CTLA4 gene and kidney transplant rejection in Korean patients. Transpl Immunol 2010; 24:40-4.

Kusztal M, Radwan-Oczko M, Kocielska-Kasprzak K, Boratyska M, Patrzaek D, Klinger M. Possible association of CTLA-4 gene polymorphism with cyclosporine-induced gingival overgrowth in kidney transplant recipients. Transplant Proc 2007; 39:2763-5.

Liu Y, Liang WB, Gao LB et al. CTLA4 and CD86 gene polymorphisms and susceptibility to chronic obstructive pulmonary disease. Hum Immunol 2010; 71:1141-6.

Majumder PP, Staats HF, Sarkar-Roy N et al. Genetic determinants of immune-response to a polysaccharide vaccine for typhoid. Hugo J 2009; 3:17-30.

Nisticò L, Buzzetti R, Pritchard LE et al. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian Diabetes Registry. Hum Mol Genet 1996; 5:1075-80.

Oh KY, Kang MJ, Choi WA et al. Association Between Serum IgE Levels and the CTLA4 +49A/G and FCER1B -654C/T Polymorphisms in Korean Children With Asthma. Allergy Asthma Immunol Res 2010; 2:127-33.

Park KS, Baek JA, Do JE, Bang D, Lee ES. CTLA4 gene polymorphisms and soluble CTLA4 protein in Behcet’s disease. Tissue Antigens 2009; 74:222-7.

Sáenz López P, Vázquez Alonso F, Romero JM et al. Polymorphisms in inflammatory response genes in metastatic renal cancer. Actas Urol Esp 2009; 33:474-81.

Shahinian A, Pfeffer K, Lee KP et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 1993; 261:609-612.

Vieland VJ, Huang Y, Bartlett C, Davies TF, Tomer Y. A multilocus model of the genetic architecture of autoimmune thyroid disorder, with clinical implications. Am J Hum Genet 2008; 82:1349-56.

Wang Y, Ni Y, Wei H, Wang FC, Ge LP, Gao X. Stable skin-specific overexpression of human CTLA4-Ig in transgenic mice through seven generations. Acta Biochim Biophys Sin 2006; 38:171-8.

Waterhouse P, Penninger JM, Timms E et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 1995; 270:985-8.

Yee LJ, Perez KA, Tang J, van Leeuwen DJ, Kaslow RA. Association of CTLA4 polymorphisms with sustained response to interferon and ribavirin therapy for chronic hepatitis C virus infection. J Infect Dis 2003; 187:1264-71.

Yousefipour G, Erfani N, Momtahan M, Moghaddasi H, Ghaderi A. CTLA4 exon 1 and promoter polymorphisms in patients with multiple sclerosis. Acta Neurol Scand 2009; 120:424-9.

Zhu G, Agusti A, Gulsvik A et al. CTLA4 gene polymorphisms are associated with chronic bronchitis. Eur Respir J 2009; 34:598-604.

C (Contd) →

 A B C D E F G H I K L M N O P R S T U V W X Z