Gene References

A B C D E F G H I K L M N O P R S T U V W X Z

SCARB1 (scavenger receptor class B, member 1)

Arnedo M, Taffé P, Sahli R et al. Contribution of 20 single nucleotide polymorphisms of 13 genes to dyslipidemia associated with antiretroviral therapy. Pharmacogenet Genomics 2007; 17:755-64.

Bauerfeind A, Knoblauch H, Costanza MC et al. Concordant association of lipid gene variation with a combined HDL/LDL-cholesterol phenotype in two European populations. Hum Hered 2006; 61:123-31.

Cerda A, Genvigir FD, Arazi SS et al. Influence of SCARB1 polymorphisms on serum lipids of hypercholesterolemic individuals treated with atorvastatin. Clin Chim Acta 2010; 411:631-7.

Chiba-Falek O, Nichols M, Suchindran S et al. Impact of gene variants on sex-specific regulation of human Scavenger receptor class B type 1 (SR-BI) expression in liver and association with lipid levels in a population-based study. BMC Med Genet 2010; 11:9.

Naj AC, West M, Rich SS et al. Association of scavenger receptor class B type I polymorphisms with subclinical atherosclerosis: the Multi-Ethnic Study of Atherosclerosis. Circ Cardiovasc Genet 2010; 3:47-52.

Teupser D, Mueller MA, Koglin J et al. CD36 mRNA expression is increased in CD14+ monocytes of patients with coronary heart disease. Clin Exp Pharmacol Physiol 2008; 35:552-6.

Purdue MP, Johansson M, Zelenika D et al. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13. 3. Nat Genet 2011; 43:60-5.

Vergeer M, Korporaal SJ, Franssen R et al. Genetic variant of the scavenger receptor BI in humans. N Engl J Med 2011; 364:136-45.

Wiersma H, Gatti A, Nijstad N, Kuipers F, Tietge UJ. Hepatic SR-BI, not endothelial lipase, expression determines biliary cholesterol secretion in mice. J Lipid Res 2009; 50:1571-80.

Zerbib J, Seddon JM, Richard F et al. rs5888 variant of SCARB1 gene is a possible susceptibility factor for age-related macular degeneration. PLoS One 2009. doi:10. 1371/journal. pone. 0007341.

SCN1A (sodium channel, voltage-gated, type I, alpha subunit)

Baulac S, Gourfinkel-An I, Picard F et al. A second locus for familial generalized epilepsy with febrile seizures plus maps to chromosome 2q21-q33. Am J Hum Genet 1999; 65:1078-85.

Buoni S, Orrico A, Galli L et al. SCN1A (2528delG) novel truncating mutation with benign outcome of severe myoclonic epilepsy of infancy. Neurology 2006; 66:606-7.

Dichgans M, Freilinger T, Eckstein G et al. Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 2005; 366:371-7.

Escayg A, de Waard M, Lee DD et al. Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet 2000; 66:1531-9.

Krikova EV, Val’dman EA, Avakian GN et al. Association study of the SCN1 gene polymorphism and effective dose of lamotrigine. Zh Nevrol Psikhiatr Im S S Korsakova 2009; 109:57-62.

Mantegazza M, Gambardella A, Rusconi R et al. Identification of an Nav1. 1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures. Proc Natl Acad Sci USA 2005; 102:18177-82

McArdle EJ, Kunic JD, George AL Jr. Novel SCN1A frameshift mutation with absence of truncated Nav1. 1 protein in severe myoclonic epilepsy of infancy. Am J Med Genet 2008; 146:2421-3.

Mulley JC, Nelson P, Guerrero S et al. A new molecular mechanism for severe myoclonic epilepsy of infancy: exonic deletions in SCN1A. Neurology 2006; 67:1094-5.

Schlachter K, Gruber-Sedlmayr U, Stogmann E et al. A splice site variant in the sodium channel gene SCN1A confers risk of febrile seizures. Neurology 2009; 72:974-8.

Tate SK, Singh R, Hung CC et al. A common polymorphism in the SCN1A gene associates with phenytoin serum levels at maintenance dose. Pharmacogenet Genomics 2006; 16:721-6.

SCN1B (sodium channel, voltage-gated, type I, beta)

Brackenbury WJ, Davis TH, Chen C et al. Voltage-gated Na+ channel beta1 subunit-mediated neurite outgrowth requires Fyn kinase and contributes to postnatal CNS development in vivo. J Neurosci 2008; 28:3246-56.

Chen C, Westenbroek RE, Xu X et al. Mice lacking sodium channel beta-1 subunits display defects in neuronal excitability, sodium channel expression, and nodal architecture. J Neurosci 2004; 24:4030-42.

Qin N, D’Andrea MR, Lubin ML, Shafaee N, Codd EE, Correa AM. Molecular cloning and functional expression of the human sodium channel beta-1B subunit, a novel splicing variant of the beta-1 subunit. Europ J Biochem 2003; 270:4762-70.

Wallace RH, Wang DW, Singh R et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel beta1 subunit gene SCN1B. Nat Genet 1998; 19:366-70.

Watanabe H, Koopmann TT, Le Scouarnec S et al. Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest 2008; 118:2260-8.

SCN2A (sodium channel, voltage-gated, type II, alpha subunit)

Holland KD, Kearney JA, Glauser TA et al. Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy. Neurosci Lett 2008; 433:65-70.

Kile KB, Tian N, Durand DM. Scn2a sodium channel mutation results in hyperexcitability in the hippocampus in vitro. Epilepsia 2008; 49:488-99.

Kwan P, Poon WS, Ng HK et al. Multidrug resistance in epilepsy and polymorphisms in the voltage-gated sodium channel genes SCN1A, SCN2A, and SCN3A: correlation among phenotype, genotype, and mRNA expression. Pharmacogenet Genomics 2008; 18:989-98.

SCN3A (sodium channel, voltage-gated, type III, alpha subunit)

Holland KD, Kearney JA, Glauser TA et al. Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy. Neurosci Lett 2008; 433:65-70.

Kasai N, Fukushima K, Ueki Y et al. Genomic structures of SCN2A and SCN3A – candidate genes for deafness at the DFNA16 locus. Gene 2001; 264:113-22.

SCN4A (sodium channel, voltage-gated, type IV, alpha subunit)

Kim MK, Lee SH, Park MS et al. Mutation screening in Korean hypokalemic periodic paralysis patients: a novel SCN4A Arg672Cys mutation. Neuromuscul Disord 2004; 14:727-31.

Lion-Francois L, Mignot C, Vicart S et al. Severe neonatal episodic laryngospasm due to de novo SCN4A mutations: a new treatable disorder. Neurology 2010; 75:641-5.

Park YH, Kim JB. An atypical phenotype of hypokalemic periodic paralysis caused by a mutation in the sodium channel gene SCN4A. Korean J Pediatr 2010; 53:909-12.

Shirakawa T, Sakai K, Kitagawa Y, Hori A, Hirose G. A novel murine myotonia congenita without molecular defects in the ClC-1 and the SCN4A. Neurology 2002; 59:1091-4.

SCN5A (sodium channel, voltage-gated, type V, alpha subunit)

Albert CM, MacRae CA, Chasman DI et al. Common variants in cardiac ion channel genes are associated with sudden cardiac death. Circ Arrhythm Electrophysiol 2010; 3:222-9.

Albert CM, Nam EG, Rimm EB et al. Cardiac sodium channel gene variants and sudden cardiac death in women. Circulation 2008; 117:16-23.

Amin AS, Boink GJ, Atrafi F et al. Facilitatory and inhibitory effects of SCN5A mutations on atrial fibrillation in Brugada syndrome. Europace 2011; 13:968-75.

Darbar D, Kannankeril PJ, Donahue BS et al. Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation. Circulation 2008; 15:1927-35.

Ellinor PT, Nam EG, Shea MA, Milan DJ, Ruskin JN, MacRae CA. Cardiac sodium channel mutation in atrial fibrillation. Heart Rhythm 2008; 1:99-105.

Gui J, Wang T, Trump D, Zimmer T, Lei M. Mutation-specific effects of polymorphism H558R in SCN5A-related sick sinus syndrome. J Cardiovasc Electrophysiol 2010; 21:564-73.

Hesse M, Kondo CS, Clark RB et al. Dilated cardiomyopathy is associated with reduced expression of the cardiac sodium channel Scn5a. Cardiovasc Res 2007; 75:498-509.

Johnson JN, Tester DJ, Perry J, Salisbury BA, Reed CR, Ackerman MJ. Prevalence of early-onset atrial fibrillation in congenital long QT syndrome. Heart Rhythm 2008; 5:704-9.

Makita N, Behr E, Shimizu W et al. The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. J Clin Invest 2008; 118:2219-29.

Mazzone A, Strege PR, Tester DJ et al. A mutation in telethonin alters Nav1. 5 function. J Biol Chem 2008; 24:16537-44.

McNair WP, Ku L, Taylor MRG et al. Familial Cardiomyopathy Registry Research Group: SCNA5 mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation 2004; 110:2163-7.

Nishii N, Ogawa M, Morita H et al. SCN5A mutation is associated with early and frequent recurrence of ventricular fibrillation in patients with Brugada syndrome. Circ J 2010; 74:2572-8.

Oliva A, Hu D, Viskin S et al. SCN5A mutation associated with acute myocardial infarction. Leg Med 2009; 11 Suppl 1:206-9.

Poelzing S, Forleo C, Samodell M et al. SCN5A polymorphism restores trafficking of a Brugada syndrome mutation on a separate gene. Circulation 2006; 114:368-76.

Shan L, Makita N, Xing Y et al. SCN5A variants in Japanese patients with left ventricular noncompaction and arrhythmia. Mol Genet Metab 2008; 4:468-574.

Sun A, Xu L, Wang S et al. SCN5A R1193Q polymorphism associated with progressive cardiac conduction defects and long QT syndrome in a Chinese family. J Med Genet 2008; 45:127-8.

Tan HL, Kupershmidt S, Zhang R et al. Brugada syndrome with marked conduction disease: dual implications of a SCN5A mutation. Pacing Clin Electrophysiol 2008; 5:630-4.

Watanabe H, Koopmann TT, Le Scouarnec S et al. Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest 2008; 118:2260-8.

Zhang T, Yong SL, Drinko JK et al. LQTS mutation N1325S in cardiac sodium channel gene SCN5A causes cardiomyocyte apoptosis, cardiac fibrosis and contractile dysfunction in mice. Int J Cardiol 2011; 147:239-45.

SCN9A (sodium channel, voltage-gated, type IX, alpha subunit)

Choi JS, Boralevi F, Brissaud O et al. Paroxysmal extreme pain disorder: a molecular lesion of peripheral neurons. Nat Rev Neurol 2011; 7:51-5.

Cox JJ, Reimann F, Nicholas AK et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 2006; 444:894-8.

Cox JJ, Sheynin J, Shorer Z et al. Congenital insensitivity to pain: novel SCN9A missense and in-frame deletion mutations. Hum Mutat 2010; 31:1670-86.

Drenth JP, Waxman SG. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J Clin Invest 2007; 117:3603-9.

Fertleman CR, Baker MD, Parker KA et al. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 2006; 52:767-74.

Nassar MA, Stirling LC, Forlani G et al. Nociceptor-specific gene deletion reveals a major role for Nav1. 7 (PN1) in acute and inflammatory pain. Proc Natl Acad Sci USA 2004; 101:12706-11.

Singh NA, Pappas C, Dahle EJ et al. A role of SCN9A in human epilepsies, as a cause of febrile seizures and as a potential modifier of Dravet syndrome. PLoS Genet 2009. doi:10. 1371/journal. pgen. 1000649.

SCNN1G (sodium channel, nonvoltage-gated 1, gamma)

Hansson JH, Schild L, Lu Y et al. A de novo missense mutation of the beta subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity. Proc Natl Acad Sci USA 1995; 92:11495-9.

Jin HS, Hong KW, Lim JE et al. Genetic variations in the sodium balance-regulating genes ENaC, NEDD4L, NDFIP2 and USP2 influence blood pressure and hypertension. Kidney Blood Press Res 2010; 33:15-23.

Maitland-van der Zee AH, Turner ST, Schwartz GL, Chapman AB, Klungel OH, Boerwinkle E. A multilocus approach to the antihypertensive pharmacogenetics of hydrochlorothiazide. Pharmacogenet Genomics 2005; 15:287-93.

Mérillat AM, Charles RP, Porret A et al. Conditional gene targeting of the ENaC subunit genes Scnn1b and Scnn1g. Am J Physiol Renal Physiol 2009; 296:249-56.

Strautnieks SS, Thompson RJ, Gardiner RM, Chung E. A novel splice-site mutation in the gamma subunit of the epithelial sodium channel gene in three pseudohypoaldosteronism type 1 families. Nat Genet 1996; 13:248-50.

SLC5A5 (solute carrier family 5 (sodium iodide symporter), member 5)

Fujiwara H, Tatsumi K, Miki K et al. Recurrent T354P mutation of the Na+/I- symporter in patients with iodide transport defect. J Clin Endocrinol Metab 1998; 83:2940-3.

Kosugi S, Inoue S, Matsuda A, Jhiang SM. Novel, missense and loss-of-function mutations in the sodium/iodide symporter gene causing iodide transport defect in three Japanese patients. J Clin Endocrinol Metab 1998; 83:3373-6.

Kotka M, Lieden A, Pettersson S, Trinchieri V, Masci A, D’Amato M. Solute carriers (SLC) in inflammatory bowel disease: a potential target of probiotics? J Clin Gastroenterol 2008; 42:133-5.

Matsuda A, Kosugi S. A homozygous missense mutation of the sodium/iodide symporter gene causing iodide transport defect. J Clin Endocrinol Metab 1997; 82:3966-71.

SLC5A8 (solute carrier family 5 (iodide transporter), member 8)

Ananth S, Zhuang L, Gopal E et al. Diclofenac-induced stimulation of SMCT1 (SLC5A8) in a heterologous expression system: a RPE specific phenomenon. Biochem Biophys Res Commun 2010; 394:75-80.

Frank H, Gröger N, Diener M, Becker C, Braun T, Boettger T. Lactaturia and loss of sodium-dependent lactate uptake in the colon of SLC5A8-deficient mice. J Biol Chem 2008; 283:24729-37.

Li H, Myeroff L, Smiraglia D et al. SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers. Proc Natl Acad Sci USA 2003; 100:8412-7.

Porra V, Ferraro-Peyret C, Durand C et al. Silencing of the tumor suppressor gene SLC5A8 is associated with BRAF mutations in classical papillary thyroid carcinomas. J Clin Endocrinol Metab 2005; 90:3028-35.

Thangaraju M, Ananth S, Martin PM et al. c/ebpdelta Null mouse as a model for the double knock-out of slc5a8 and slc5a12 in kidney. J Biol Chem 2006; 281:26769-73.

Whitman SP, Hackanson B, Liyanarachchi S et al. DNA hypermethylation and epigenetic silencing of the tumor suppressor gene, SLC5A8, in acute myeloid leukemia with the MLL partial tandem duplication. Blood 2008; 112:2013-6.

Zhang Y, Bao YL, Yang MT et al. Activin A induces SLC5A8 expression through the Smad3 signaling pathway in human colon cancer RKO cells. Int J Biochem Cell Biol 2010; 42:1964-72.

SLC6A2 (solute carrier family 6 (neurotransmitter transporter, noradrenalin), member 2)

Azuma J, Nonen S. Chronic heart failure: beta-blockers and pharmacogenetics. Eur J Clin Pharmacol 2009; 65:3-17.

Clarke TK, Dempster E, Docherty SJ et al. Multiple polymorphisms in genes of the adrenergic stress system confer vulnerability to alcohol abuse. Addict Biol 2010. doi:10. 1111/j. 1369-1600. 2010. 00263. x.

Dlugos AM, Hamidovic A, Palmer AA, de Wit H. Further evidence of association between amphetamine response and SLC6A2 gene variants. Psychopharmacology 2009; 206:501-11.

Joung Y, Kim CH, Moon J et al. Association studies of -3081(A/T) polymorphism of norepinephrine transporter gene with attention deficit/hyperactivity disorder in Korean population. Am J Med Genet B Neuropsychiatr Genet 2010; 153:691-4.

Kim BN, Kim JW, Hong SB, Cho SC, Shin MS, Yoo HJ. Possible association of norepinephrine transporter -3081(A/T) polymorphism with methylphenidate response in attention deficit hyperactivity disorder. Behav Brain Funct 2010; 6:57.

Kohli U, Hahn MK, English BA et al. Genetic variation in the presynaptic norepinephrine transporter is associated with blood pressure responses to exercise in healthy humans. Pharmacogenet Genomics 2011; 21:171-8.

Méary A, Brousse G, Jamain S et al. Pharmacogenetic study of atypical antipsychotic drug response: involvement of the norepinephrine transporter gene. Am J Med Genet B Neuropsychiatr Genet 2008; 147:491-4.

Paczkowski FA, Bönisch H, Bryan-Lluka LJ. Pharmacological properties of the naturally occurring Ala(457)Pro variant of the human norepinephrine transporter. Pharmacogenetics 2002; 12:165-73.

Shannon JR, Flattem NL, Jordan J et al. Orthostatic intolerance and tachycardia associated with norepinephrine-transporter deficiency. N Engl J Med 2000; 342:541-9.

Song DH, Jhung K, Song J, Cheon KA. The 1287 G/A polymorphism of the norepinephrine transporter gene (NET) is involved in commission errors in Korean children with attention deficit hyperactivity disorder. Behav Brain Funct 2011; 7:12.

Song J, Song DH, Jhung K, Cheon KA. Norepinephrine transporter gene (SLC6A2) is involved with methylphenidate response in Korean children with attention deficit hyperactivity disorder. Int Clin Psychopharmacol 2011; 26:107-13.

Spraggs CF, Pillai SG, Dow D et al. Pharmacogenetics and obesity: common gene variants influence weight loss response of the norepinephrine/dopamine transporter inhibitor GW320659 in obese subjects. Pharmacogenet Genomics 2005; 15:883-9.

Yoshida K, Takahashi H, Higuchi H et al. Prediction of antidepressant response to milnacipran by norepinephrine transporter gene polymorphisms. Am J Psychiatry 2004; 161:1575-80.

SLC6A3 (solute carrier family 6 (neurotransmitter transporter, dopamine), member 3)

Agurs-Collins T, Fuemmeler BF. Dopamine polymorphisms and depressive symptoms predict foods intake. Results from a nationally representative sample. Appetite 2011; 57:339-48.

Althaus M, Groen Y, Wijers AA et al. Variants of the SLC6A3 (DAT1) polymorphism affect performance monitoring-related cortical evoked potentials that are associated with ADHD. Biol Psychol 2010; 85:19-32.

Cummins TD, Hawi Z, Hocking J et al. Dopamine transporter genotype predicts behavioural and neural measures of response inhibition. Mol Psychiatry 2011. doi:10. 1038/mp. 2011. 104.

Franklin TR, Wang Z, Li Y et al. Dopamine transporter genotype modulation of neural responses to smoking cues: confirmation in a new cohort. Addict Biol 2011; 16:308-22.

Hamidovic A, Dlugos A, Palmer AA, de Wit H. Polymorphisms in dopamine transporter (SLC6A3) are associated with stimulant effects of D-amphetamine: an exploratory pharmacogenetic study using healthy volunteers. Behav Genet 2010; 40:255-61.

Kurian MA, Zhen J, Cheng SY et al. Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia. J Clin Invest 2009; 119:1595-603.

Lerman C, Caporaso NE, Audrain J et al. Evidence suggesting the role of specific genetic factors in cigarette smoking. Health Psychol 1999; 18:14-20.

Molnar S, Mihanović M, Grah M, Kezić S, Filaković P, Degmecić D. Comparative study on gene tags of the neurotransmission system in schizophrenic and suicidal subjects. Coll Antropol 2010; 34:1427-32.

Pattarachotanant N, Sritharathikhun T, Suttirat S, Tencomnao T. Association of C/T polymorphism in intron 14 of the dopamine transporter gene (rs40184) with major depression in a northeastern Thai population. Genet Mol Res 2010; 9:565-72.

Purper-Ouakil D, Wohl M, Orejarena S et al. Pharmacogenetics of methylphenidate response in attention deficit/hyperactivity disorder: association with the dopamine transporter gene (SLC6A3). Am J Med Genet B Neuropsychiatr Genet 2008; 147:1425-30.

Sabol SZ, Nelson ML, Fisher C et al. A genetic association for cigarette smoking behavior. Health Psychol 1999; 18:7-13.

Tzvetkov MV, Brockmöller J, Roots I, Kirchheiner J. Common genetic variations in human brain-specific tryptophan hydroxylase-2 and response to antidepressant treatment. Pharmacogenet Genomics 2008; 18:495-506.

Ujike H, Harano M, Inada T et al. Nine- or fewer repeat alleles in VNTR polymorphism of the dopamine transporter gene is a strong risk factor for prolonged methamphetamine psychosis. Pharmacogenomics J 2003; 3:242-7.

Wang GJ, Chang L, Volkow ND et al. Decreased brain dopaminergic transporters in HIV-associated dementia patients. Brain 2004; 127:2452-8.

SLC6A4 (solute carrier family 6 (neurotransmitter transporter, serotonin), member 4)

Abdelmalik N, Ruhé HG, Barwari K et al. Effect of the selective serotonin reuptake inhibitor paroxetine on platelet function is modified by a SLC6A4 serotonin transporter polymorphism. Thromb Haemost 2008; 6:2168-74.

Aoki J, Ikeda K, Murayama O, Yoshihara E, Ogai Y, Iwahashi K. The association between personality, pain threshold and a single nucleotide polymorphism (rs3813034) in the 3’-untranslated region of the serotonin transporter gene (SLC6A4). J Clin Neurosci 2010; 17:574-8.

Bloch B, Reshef A, Cohen T et al. Preliminary effects of bupropion and the promoter region (HTTLPR) serotonin transporter (SLC6A4) polymorphism on smoking behavior in schizophrenia. Psychiatry Res 2010; 175:38-42.

Bonvicini C, Minelli A, Scassellati C et al. Serotonin transporter gene polymorphisms and treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:934-9.

Bosia M, Anselmetti S, Pirovano A et al. HTTLPR functional polymorphism in schizophrenia: executive functions vs. sustained attention dissociation. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:81-5.

Camilleri M, Busciglio I, Carlson P et al. Pharmacogenetics of low dose clonidine in irritable bowel syndrome. Neurogastroenterol Motil 2009; 21:399-410.

Capozzo MA, Schillani G, Aguglia E et al. Serotonin transporter 5-HTTLPR polymorphism and response to citalopram in terminally ill cancer patients: report of twenty-one cases. Tumori 2009; 95:479-83.

Deniz M, Bayazit YA, Celenk F et al. Significance of serotonin transporter gene polymorphism in tinnitus. Otol Neurotol 2010; 31:19-24.

Deuschle M, Schredl M, Schilling C et al. Association between a serotonin transporter length polymorphism and primary insomnia. Sleep 2010; 33:343-7.

Dombrovski AY, Mulsant BH, Ferrell RE et al. Serotonin transporter triallelic genotype and response to citalopram and risperidone in dementia with behavioral symptoms. Int Clin Psychopharmacol 2010; 25:37-45.

Gerretsen P, Pollock BG. Pharmacogenetics and the serotonin transporter in late-life depression. Expert Opin Drug Metab Toxicol 2008; 4:1465-78.

Iordanidou M, Tavridou A, Petridis I et al. The serotonin transporter promoter polymorphism (5-HTTLPR) is associated with type 2 diabetes. Clin Chim Acta 2010; 411:167-71.

Ishii T, Wakabayashi R, Kurosaki H, Gemma A, Kida K. Association of serotonin transporter gene variation with smoking, chronic obstructive pulmonary disease, and its depressive symptoms. J Hum Genet 2011; 56:41-6.

Karpyak VM, Biernacka JM, Weg MW et al. Interaction of SLC6A4 and DRD2 polymorphisms is associated with a history of delirium tremens. Addict Biol 2010; 15:23-34.

Lasky-Su JA, Faraone SV, Glatt SJ, Tsuang MT. Meta-analysis of the association between two polymorphisms in the serotonin transporter gene and affective disorders. Am J Med Genet B Neuropsychiatr Genet 2005; 133:110-5.

Martín-Santos R, Torrens M, Poudevida S et al. 5-HTTLPR polymorphism, mood disorders and MDMA use in a 3-year follow-up study. Addict Biol 2010; 15:15-22.

Ponder KL, Salisbury A, McGonnigal B, Laliberte A, Lester B, Padbury JF. Maternal depression and anxiety are associated with altered gene expression in the human placenta without modification by antidepressant use: Implications for fetal programming. Dev Psychobiol 2011; 53:711-23.

Rachalski A, Alexandre C, Bernard JF et al. Altered sleep homeostasis after restraint stress in 5-HTT knock-out male mice: a role for hypocretins. J Neurosci 2009; 29:15575-85.

Ramey-Hartung B, El-Mallakh RS, Reynolds KK. Pharmacogenetic testing in schizophrenia and posttraumatic stress disorder. Clin Lab Med 2008; 28:627-43.

Rivero O, Sanjuan J, Aguilar EJ et al. Serotonin transporter gene polymorphisms and auditory hallucinations in psychosis. Rev Neurol 2010; 50:325-32.

Schmitt A, Benninghoff J, Moessner R et al. Adult neurogenesis in serotonin transporter deficient mice. J Neural Transm 2007; 114:1107-19.

Strug LJ, Suresh R, Fyer AJ et al. Panic disorder is associated with the serotonin transporter gene (SLC6A4) but not the promoter region (5-HTTLPR). Mol Psychiatry 2010; 15:166-76.

Thakur GA, Grizenko N, Sengupta SM, Schmitz N, Joober R. The 5-HTTLPR polymorphism of the serotonin transporter gene and short term behavioral response to methylphenidate in children with ADHD. BMC Psychiatry 2010; 10:50.

SLC10A1 (solute carrier family 10 (sodium/bile acid cotransporter family), member 1)

Ho RH, Tirona RG, Leake BF et al. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 2006; 130:1793-806.

Kullak-Ublick GA, Stieger B, Meier PJ. Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 2004; 126:322-42.

SLC10A2 (solute carrier family 10 (sodium/bile acid cotransporter family), member 2)

Dawson PA, Haywood J, Craddock AL et al. Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice. J Biol Chem 2003; 278:33920-7.

Deeken JF, Cormier T, Price DK et al. A pharmacogenetic study of docetaxel and thalidomide in patients with castration-resistant prostate cancer using the DMET genotyping platform. Pharmacogenomics J 2010; 10:191-9.

Oelkers P, Kirby LC, Heubi JE, Dawson PA. Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2). J Clin Invest 1997; 99:1880-7.

Shih DQ, Bussen M, Sehayek E et al. Hepatocyte nuclear factor-1alpha is an essential regulator of bile acid and plasma cholesterol metabolism. Nat Genet 2001; 27:375-82.

SLC11A1 (solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1)

Ates O, Dalyan L, Hatemi G, Hamuryudan V, Topal-Sarikaya A. Genetic susceptibility to Behçet’s syndrome is associated with NRAMP1 (SLC11A1) polymorphism in Turkish patients. Rheumatol Int 2009; 29:787-91.

Ates O, Dalyan L, Müsellim B et al. NRAMP1 (SLC11A1) gene polymorphisms that correlate with autoimmune versus infectious disease susceptibility in tuberculosis and rheumatoid arthritis. Int J Immunogenet 2009; 36:15-29.

Jin J, Sun L, Jiao W et al. SLC11A1 (Formerly NRAMP1) gene polymorphisms associated with pediatric tuberculosis in China. Clin Infect Dis 2009; 48:733-8.

Li X, Yang Y, Zhou F et al. SLC11A1 (NRAMP1) Polymorphisms and Tuberculosis Susceptibility: Updated Systematic Review and Meta-Analysis. PLoS One 2011. doi:10. 1371/journal. pone. 0015831.

Malik S, Abel L, Tooker H et al. Alleles of the NRAMP1 gene are risk factors for pediatric tuberculosis disease. Proc Natl Acad Sci USA 2005; 102:12183-8.

Pedroza L, Sauma M, Vasconcelos JM et al. Systemic Lupus Erythematosus: Association with KIR and SLC11A1 polymorphisms, ethnic predisposition and influence in clinical manifestations at onset revealed by ancestry genetic markers in an urban Brazilian population. Lupus 2011; 20:265-73.

Stienstra Y, van der Werf TS, Oosterom E et al. Susceptibility to Buruli ulcer is associated with the SLC11A1 (NRAMP1) D543N polymorphism. Genes Immun 2006; 7:185-9.

Zhang C, Wang Y, Chen H, Gu C, Fang X. SLC11A1 gene polymorphisms are not associated to somatic cell score and milk yield in Chinese Holstein. Vet Immunol Immunopathol 2009; 127:389-92.

SLC12A3 (solute carrier family 12 (sodium/chloride transporters), member 3)

Kamdem LK, Hamilton L, Cheng C et al. Genetic predictors of glucocorticoid-induced hypertension in children with acute lymphoblastic leukemia. Pharmacogenet Genomics 2008; 18:507-14.

Ko B, Hoover RS. Molecular physiology of the thiazide-sensitive sodium-chloride cotransporter. Curr Opin Nephrol Hypertens 2009; 18:421-7.

van Rijn-Bikker PC, Mairuhu G, van Montfrans GA et al. Genetic factors are relevant and independent determinants of antihypertensive drug effects in a multiracial population. Am J Hypertens 2009; 22:1295-302.

Vormfelde SV, Burckhardt G, Zirk A, Wojnowski L, Brockmöller J. Pharmacogenomics of diuretic drugs: data on rare monogenic disorders and on polymorphisms and requirements for further research. Pharmacogenomics 2003; 4:701-34.

Yang SS, Lo YF, Yu IS et al. Generation and analysis of the thiazide-sensitive Na+ -Cl- cotransporter (Ncc/Slc12a3) Ser707X knockin mouse as a model of Gitelman syndrome. Hum Mutat 2010; 31:1304-15.

SLC14A2 (solute carrier family 14 (urea transporter), member 2)

Fenton RA, Smith CP, Knepper MA. Role of collecting duct urea transporters in the kidney-insights from mouse models. J Membr Biol 2006; 212:119-31.

Hong X, Xing H, Yu Y et al. Genetic polymorphisms of the urea transporter gene are associated with antihypertensive response to nifedipine GITS. Methods Find Exp Clin Pharmacol 2007; 29:3-10.

SLC15A1 (solute carrier family 15 (oligopeptide transporter), member 1)

Omkvist DH, Brodin B, Nielsen CU. Ibuprofen is a non-competitive inhibitor of the peptide transporter hPEPT1 (SLC15A1): possible interactions between hPEPT1 substrates and ibuprofen. Br J Pharmacol 2010; 161:1793-805.

Saito S, Iida A, Sekine A et al. Catalog of 238 variations among six human genes encoding solute carriers ( hSLCs) in the Japanese population. J Hum Genet 2002; 47:576-84.

Zucchelli M, Torkvist L, Bresso F et al. PepT1 oligopeptide transporter (SLC15A1) gene polymorphism in inflammatory bowel disease. Inflamm Bowel Dis 2009; 15:1562-9.

SLC15A2 (solute carrier family 15 (H+/peptide transporter), member 2)

Liu R, Tang AM, Tan YL, Limenta LM, Lee EJ. Interethnic differences of PEPT2 (SLC15A2) polymorphism distribution and associations with cephalexin pharmacokinetics in healthy Asian subjects. Eur J Clin Pharmacol 2009; 65:65-70.

Liu R, Tang AM, Tan YL, Limenta LM, Lee EJ. Effects of sodium bicarbonate and ammonium chloride pre-treatments on the PEPT2 (SLC15A2) mediated renal clearance of cephalexin in healthy subjects. Drug Metab Pharmacokinet 2011; 26:87-93.

Pinsonneault J, Nielsen CU, Sadée W. Genetic variants of the human H+/dipeptide transporter PEPT2: analysis of haplotype functions. J Pharmacol Exp Ther 2004; 311:1088-96.

Terada T, Irie M, Okuda M, Inui K. Genetic variant Arg57His in human H+/peptide cotransporter 2 causes a complete loss of transport function. Biochem Biophys Res Commun 2004; 316:416-20.

SLC19A1 (solute carrier family 19 (folate transporter), member 1)

Chatzikyriakidou A, Georgiou I, Voulgari PV, Papadopoulos CG, Tzavaras T, Drosos AA. Transcription regulatory polymorphism -43T>C in the 5’-flanking region of SLC19A1 gene could affect rheumatoid arthritis patient response to methotrexate therapy. Rheumatol Int 2007; 11:1057-61.

Chatzikyriakidou A, Vakalis KV, Kolaitis N et al. Distinct association of SLC19A1 polymorphism -43T>C with red cell folate levels and of MTHFR polymorphism 677C>T with plasma folate levels. Clin Biochem 2008; 3:174-76.

Drozdzik M, Rudas T, Pawlik A, Gornik W, Kurzawski M, Herczynska M. Reduced folate carrier-1 80G>A polymorphism affects methotrexate treatment outcome in rheumatoid arthritis. Pharmacogenomics J 2007; 7:404-7.

Dufficy L, Naumovski N, Ng X et al. G80A reduced folate carrier SNP influences the absorption and cellular translocation of dietary folate and its association with blood pressure in an elderly population. Life Sci 2006; 79:957-66.

Gelineau-van Waes J, Maddox JR, Smith LM et al. Microarray analysis of E9. 5 reduced folate carrier (RFC1; Slc19a1) knockout embryos reveals altered expression of genes in the cubilin-megalin multiligand endocytic receptor complex. BMC Genomics 2008; 9:156.

James HM, Gillis D, Hissaria P et al. Common polymorphisms in the folate pathway predict efficacy of combination regimens containing methotrexate and sulfasalazine in early rheumatoid arthritis. J Rheumatol 2008; 4:562-71.

Kishi S, Cheng C, French D et al. Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood 2007; 109:4151-7.

Wani NA, Kaur J. Reduced levels of folate transporters (PCFT and RFC) in membrane lipid rafts result in colonic folate malabsorption in chronic alcoholism. J Cell Physiol 2011; 226:579-87.

Yeoh AE, Lu Y, Chan JY et al. Genetic susceptibility to childhood acute lymphoblastic leukemia shows protection in Malay boys: results from the Malaysia-Singapore ALL Study Group. Leuk Res 2010; 34:276-83.

SLC22A1 (solute carrier family 22 (organic cation transporter), member 1)

Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH. Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus. Pharmacogenomics J 2009; 9:242-7.

Kerb R, Brinkmann U, Chatskaia N et al. Identification of genetic variations of the human organic cation transporter hOCT1 and their functional consequences. Pharmacogenetics 2002; 12:591-5.

Itoda M, Saito Y, Maekawa K et al. Seven novel single nucleotide polymorphisms in the human SLC22A1 gene encoding organic cation transporter 1 (OCT1). Drug Metab Pharmacokinet 2004; 19:308-12.

Jonker JW, Wagenaar E, van Eijl S, Schinkel AH. Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Mol Cell Biol 2003; 23:7902-8.

Schinkel AH, Jonker JW. Polymorphisms affecting function of the human organic cation transporter hOCT1 (SLC22A1): what are the consequences? Pharmacogenetics 2002; 12:589-90.

Shu Y, Leabman MK, Feng B et al. PharmGKB update: III. Genetic variants of SLC22A1, solute carrier family 22 (organic cation transporter), member 1. Pharmacol Rev 2004; 56:161.

SLC22A2 (solute carrier family 22 (organic cation transporter), member 2)

Fukushima-Uesaka H, Maekawa K, Ozawa S et al. Fourteen novel single nucleotide polymorphisms in the SLC22A2 gene encoding human organic cation transporter (OCT2). Drug Metab Pharmacokinet 2004; 19:239-44.

Li Q, Liu F, Zheng TS, Tang JL, Lu HJ, Jia WP. SLC22A2 gene 808 G/T variant is related to plasma lactate concentration in Chinese type 2 diabetics treated with metformin. Acta Pharmacol Sin 2010; 31:184-90.

Vormfelde SV, Burckhardt G, Zirk A, Wojnowski L, Brockmöller J. Pharmacogenomics of diuretic drugs: data on rare monogenic disorders and on polymorphisms and requirements for further research. Pharmacogenomics 2003; 4:701-34.

SLC22A4 (solute carrier family 22 (organic cation/ergothioneine transporter), member 4)

Ferguson LR, Shelling AN, Browning BL, Huebner C, Petermann I. Genes, diet and inflammatory bowel disease. Mutat Res 2007; 622:70-83.

Ridruechai C, Mahasirimongkol S, Phromjai J et al. Association analysis of susceptibility candidate region on chromosome 5q31 for tuberculosis. Genes Immun 2010; 11:416-22.

Urban TJ, Yang C, Lagpacan LL et al. Functional effects of protein sequence polymorphisms in the organic cation/ergothioneine transporter OCTN1 (SLC22A4). Pharmacogenet Genomics 2007; 17:773-82.

SLC22A6 (solute carrier family 22 (organic anion transporter), member 6)

Bahn A, Prawitt D, Buttler D et al. Genomic structure and in vivo expression of the human organic anion transporter 1 (hOAT1) gene. Biochem Biophys Res Commun 2000; 275:623-30.

Bleasby K, Hall LA, Perry JL, Mohrenweiser HW, Pritchard JB. Functional consequences of single nucleotide polymorphisms in the human organic anion transporter hOAT1 (SLC22A6). J Pharmacol Exp Ther 2005; 314:923-31.

Lu R, Chan BS, Schuster VL. Cloning of the human kidney PAH transporter: narrow substrate specificity and regulation by protein kinase C. Am J Physiol 1999; 276:295-303.

Race JE, Grassl SM, Williams WJ, Holtzman EJ. Molecular cloning and characterization of two novel human renal organic anion transporters (hOAT1 and hOAT3). Biochem Biophys Res Commun 1999; 255:508-14.

Shibayama T, Sugiyama D, Kamiyama E, Tokui T, Hirota T, Ikeda T. Characterization of CS-023 (RO4908463), a novel parenteral carbapenem antibiotic, and meropenem as substrates of human renal transporters. Drug Metab Pharmacokinet 2007; 22:41-7.

Zaïr ZM, Eloranta JJ, Stieger B, Kullak-Ublick GA. Pharmacogenetics of OATP (SLC21/SLCO), OAT and OCT (SLC22) and PEPT (SLC15) transporters in the intestine, liver and kidney. Pharmacogenomics 2008; 9:597-624.

SLC22A7 (solute carrier family 22 (organic anion transporter), member 7)

Babu E, Takeda M, Narikawa S et al. Human organic anion transporters mediate the transport of tetracycline. Jpn J Pharmacol 2002; 88:69-76.

Islam R, Anzai N, Ahmed N et al. Mouse organic anion transporter 2 (mOat2) mediates the transport of short chain fatty acid propionate. J Pharmacol Sci 2008; 106:525-8.

Kobayashi Y, Ohbayashi M, Kohyama N, Yamamoto T. Mouse organic anion transporter 2 and 3 (mOAT2/3[Slc22a7/8]) mediates the renal transport of bumetanide. Eur J Pharmacol 2005; 524:44-8.

Kobayashi Y, Ohshiro N, Sakai R, Ohbayashi M, Kohyama N, Yamamoto T. Transport mechanism and substrate specificity of human organic anion transporter 2 (hOat2 [SLC22A7]). J Pharm Pharmacol 2005; 57:573-8.

Shin HJ, Lee CH, Lee SS, Song IS, Shin JG. Identification of genetic polymorphisms of human OAT1 and OAT2 genes and their relationship to hOAT2 expression in human liver. Clin Chim Acta 2010; 411:99-105.

SLC22A8 (solute carrier family 22 (organic anion transporter), member 8)

Barros SA, Srimaroeng C, Perry JL et al. Activation of protein kinase Czeta increases OAT1 (SLC22A6)- and OAT3 (SLC22A8)-mediated transport. J Biol Chem 2009; 284:2672-9.

Eraly SA. Organic anion transporter 3 inhibitors as potential novel antihypertensives. Pharmacol Res 2008; 58:257-61.

Erdman AR, Mangravite LM, Urban TJ et al. The human organic anion transporter 3 (OAT3; SLC22A8): genetic variation and functional genomics. Am J Physiol Renal Physiol 2006; 290:905-12.

Ose A, Ito M, Kusuhara H et al. Limited brain distribution of [3R,4R,5S]-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64-0802), a pharmacologically active form of oseltamivir, by active efflux across the blood-brain barrier mediated by organic anion transporter 3 (Oat3/Slc22a8) and multidrug resistance-associated protein 4 (Mrp4/Abcc4). Drug Metab Dispos 2009; 37:315-21.

Shibayama T, Sugiyama D, Kamiyama E, Tokui T, Hirota T, Ikeda T. Characterization of CS-023 (RO4908463), a novel parenteral carbapenem antibiotic, and meropenem as substrates of human renal transporters. Drug Metab Pharmacokinet 2007; 22:41-7.

Sweet DH, Miller DS, Pritchard JB, Fujiwara Y, Beier DR, Nigam SK. Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. J Biol Chem 2002; 277:26934-43.

Takeda M, Khamdang S, Narikawa S et al. Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J Pharmacol Exp Ther 2002; 302:666-71.

Vanwert AL, Bailey RM, Sweet DH. Organic anion transporter 3 (Oat3/Slc22a8) knockout mice exhibit altered clearance and distribution of penicillin G. Am J Physiol Renal Physiol 2007; 293:1332-41.

Vanwert AL, Srimaroeng C, Sweet DH. Organic anion transporter 3 (oat3/slc22a8) interacts with carboxyfluoroquinolones, and deletion increases systemic exposure to ciprofloxacin. Mol Pharmacol 2008; 74:122-31.

SLC22A16 (solute carrier family 22 (organic cation/carnitine transporter), member 16)

Bray J, Sludden J, Griffin MJ et al. Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide. Br J Cancer 2010; 102:1003-9.

Lal S, Wong ZW, Jada SR et al. Novel SLC22A16 polymorphisms and influence on doxorubicin pharmacokinetics in Asian breast cancer patients. Pharmacogenomics 2007; 8:567-75.

Tripodi G, Modica R, Stella A, Bigatti G, Bianchi G, Stella P. Haplotype analysis of carnitine transporters and left ventricular mass in human essential hypertension. J Ren Nutr 2005; 15:2-7.

SLC23A2 (solute carrier family 23 (nucleobase transporters), member 2)

Chen AA, Marsit CJ, Christensen BC et al. Genetic variation in the vitamin C transporter, SLC23A2, modifies the risk of HPV16-associated head and neck cancer. Carcinogenesis 2009; 30:977-81.

Eck P, Erichsen HC, Taylor JG et al. Comparison of the genomic structure and variation in the two human sodium-dependent vitamin C transporters, SLC23A1 and SLC23A2. Hum Genet 2004; 4:285-94.

Erichsen HC, Engel SA, Eck PK et al. Genetic variation in the sodium-dependent vitamin C transporters, SLC23A1, and SLC23A2 and risk for preterm delivery. Am J Epidemiol 2006; 3:245-54.

Erichsen HC, Peters U, Eck P et al. Genetic variation in sodium-dependent vitamin C transporters SLC23A1 and SLC23A2 and risk of advanced colorectal adenoma. Nutr Cancer 2008; 60:652-9.

Hediger MA. New view at C. Nat Med 2002; 8:445-6.

Lutsenko EA, Carcamo JM, Golde DW. A human sodium-dependent vitamin C transporter 2 isoform acts as a dominant-negative inhibitor of ascorbic acid transport. Molec Cell Biol 2004; 24:3150-6.

Wright ME, Andreotti G, Lissowska J et al. Genetic variation in sodium-dependent ascorbic acid transporters and risk of gastric cancer in Poland. Eur J Cancer 2009; 45:1824-30.

SLC28A1 (solute carrier family 28 (sodium-coupled nucleoside transporter), member 1)

Bhutia YD, Hung SW, Patel B, Lovin D, Govindarajan R. CNT1 expression influences proliferation and chemosensitivity in drug-resistant pancreatic cancer cells. Cancer Res 2011; 71:1825-35.

Pastor-Anglada M, Cano-Soldado P, Errasti-Murugarren E, Casado FJ. SLC28 genes and concentrative nucleoside transporter (CNT) proteins. Xenobiotica 2008; 38:972-94.

Soo RA, Wang LZ, Ng SS et al. Distribution of gemcitabine pathway genotypes in ethnic Asians and their association with outcome in non-small cell lung cancer patients. Lung Cancer 2009; 63:121-7.

SLC28A2 (solute carrier family 28 (sodium-coupled nucleoside transporter), member 2)

Aymerich I, Duflot S, Fernández-Veledo S et al. The concentrative nucleoside transporter family (SLC28): new roles beyond salvage? Biochem Soc Trans 2005; 33:216-9.

Fukunaga AK, Marsh S, Murry DJ, Hurley TD, McLeod HL. Identification and analysis of single-nucleotide polymorphisms in the gemcitabine pharmacologic pathway. Pharmacogenomics J 2004; 4:307-14.

Li L, Tan CM, Koo SH, Chong KT, Lee EJ. Identification and functional analysis of variants in the human concentrative nucleoside transporter 2, hCNT2 (SLC28A2) in Chinese, Malays and Indians. Pharmacogenet Genomics 2007; 17:783-6.

Mackey JR, Yao SY, Smith KM et al. Gemcitabine transport in xenopus oocytes expressing recombinant plasma membrane mammalian nucleoside transporters. J Natl Cancer Inst 1999; 91:1876-81.

Yee SW, Shima JE, Hesselson S et al. Identification and characterization of proximal promoter polymorphisms in the human concentrative nucleoside transporter 2 (SLC28A2). J Pharmacol Exp Ther 2009; 328:699-707.

SLCO1A2 (solute carrier organic anion transporter family, member 1A2)

Badagnani I, Castro RA, Taylor TR et al. Interaction of methotrexate with organic-anion transporting polypeptide 1A2 and its genetic variants. J Pharmacol Exp Ther 2006; 318:521-9.

Bailey DG, Dresser GK, Leake BF, Kim RB. Naringin is a major and selective clinical inhibitor of organic anion-transporting polypeptide 1A2 (OATP1A2) in grapefruit juice. Clin Pharmacol Ther 2007; 81:495-502.

Franke RM, Baker SD, Mathijssen RH, Schuetz EG, Sparreboom A. Influence of solute carriers on the pharmacokinetics of CYP3A4 probes. Clin Pharmacol Ther 2008; 84:704-9.

Oscarson M, Zanger UM, Rifki OF, Klein K, Eichelbaum M, Meyer UA. Transcriptional profiling of genes induced in the livers of patients treated with carbamazepine. Clin Pharmacol Ther 2006; 80:440-56.

SLCO1B1 (solute carrier organic anion transporter family, member 1B1)

Abe T, Kakyo M, Tokui T et al. Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J Biol Chem 1999; 274:17159-63.

Brunham LR, Lansberg PJ, Zhang L et al. Differential effect of the rs4149056 variant in SLCO1B1 on myopathy associated with simvastatin and atorvastatin. Pharmacogenomics J 2011. doi:10. 1038/tpj. 2010. 92.

He J, Qiu Z, Li N et al. Effects of SLCO1B1 polymorphisms on the pharmacokinetics and pharmacodynamics of repaglinide in healthy Chinese volunteers. Eur J Clin Pharmacol 2011; 67:701-7.

Jada SR, Xiaochen S, Yan LY et al. Pharmacogenetics of SLCO1B1: haplotypes, htSNPs and hepatic expression in three distinct Asian populations. Eur J Clin Pharmacol 2007; 6:555-63.

Kameyama Y, Yamashita K, Kobayashi K, Hosokawa M, Chiba K. Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics 2005; 7:513-22.

Kohlrausch FB, de Cássia Estrela R, Barroso PF, Suarez-Kurtz G. The impact of SLCO1B1 polymorphisms on the plasma concentration of lopinavir and ritonavir in HIV-infected men. Br J Clin Pharmacol 2010; 69:95-8.

Lin R, Wang X, Zhou W et al. Association of polymorphisms in the solute carrier organic anion transporter family member 1B1 gene with essential hypertension in the Uyghur population. Ann Hum Genet 2011; 75:305-11.

Pasanen MK, Neuvonen PJ, Niemi M. Global analysis of genetic variation in SLCO1B1. Pharmacogenomics 2008; 1:19-33.

Rohrbacher M, Kirchhof A, Skarke C, Geisslinger G, Lötsch J. Rapid identification of three functionally relevant polymorphisms in the OATP1B1 transporter gene using Pyrosequencing. Pharmacogenomics 2006; 2:167-76.

Takane H, Miyata M, Burioka N et al. Pharmacogenetic determinants of variability in lipid-lowering response to pravastatin therapy. J Hum Genet 2006; 51:822-6.

van de Steeg E, van der Kruijssen CM, Wagenaar E et al. Methotrexate pharmacokinetics in transgenic mice with liver-specific expression of human organic anion-transporting polypeptide 1B1 (SLCO1B1). Drug Metab Dispos 2009; 37:277-81.

Wen J, Xiong Y. OATP1B1 388A>G polymorphism and pharmacokinetics of pitavastatin in Chinese healthy volunteers. J Clin Pharm Ther 2010; 35:99-104.

SLCO1B3 (solute carrier organic anion transporter family, member 1B3)

Letschert K, Keppler D, König J. Mutations in the SLCO1B3 gene affecting the substrate specificity of the hepatocellular uptake transporter OATP1B3 (OATP8). Pharmacogenetics 2004; 14:441-52.

Maeda T, Irokawa M, Arakawa H et al. Uptake transporter organic anion transporting polypeptide 1B3 contributes to the growth of estrogen-dependent breast cancer. J Steroid Biochem Mol Biol 2010; 122:180-5.

Nambu T, Hamada A, Nakashima R et al. Association of SLCO1B3 polymorphism with intracellular accumulation of imatinib in leukocytes in patients with chronic myeloid leukemia. Biol Pharm Bull 2011; 34:114-9.

Smith NF, Figg WD, Sparreboom A. Role of the liver-specific transporters OATP1B1 and OATP1B3 in governing drug elimination. Expert Opin Drug Metab Toxicol 2005; 1:429-45.

Tsujimoto M, Dan Y, Hirata S, Ohtani H, Sawada Y. Influence of SLCO1B3 gene polymorphism on the pharmacokinetics of digoxin in terminal renal failure. Drug Metab Pharmacokinet 2008; 23:406-11.

Woo S, Gardner ER, Chen X et al. Population pharmacokinetics of romidepsin in patients with cutaneous T-cell lymphoma and relapsed peripheral T-cell lymphoma. Clin Cancer Res 2009; 15:1496-503.

Yamakawa Y, Hamada A, Nakashima R et al. Association of genetic polymorphisms in the influx transporter SLCO1B3 and the efflux transporter ABCB1 with imatinib pharmacokinetics in patients with chronic myeloid leukemia. Ther Drug Monit 2011; 33:244-50.

SLCO1C1 (solute carrier organic anion transporter family, member 1C1)

Ianculescu AG, Friesema EC, Visser TJ, Giacomini KM, Scanlan TS. Transport of thyroid hormones is selectively inhibited by 3-iodothyronamine. Mol Biosyst 2010; 6:1403-10.

Jansen J, Friesema EC, Milici C, Visser TJ. Thyroid hormone transporters in health and disease. Thyroid 2005; 15:757-68.

Roberts LM, Woodford K, Zhou M et al. Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood-brain barrier. Endocrinology 2008; 149:6251-61.

van der Deure WM, Appelhof BC, Peeters RP et al. Polymorphisms in the brain-specific thyroid hormone transporter OATP1C1 are associated with fatigue and depression in hypothyroid patients. Clin Endocrinol 2008; 69:804-11.

SLCO2B1 (solute carrier organic anion transporter family, member 2B1)

Akamine Y, Miura M, Sunagawa S, Kagaya H, Yasui-Furukori N, Uno T. Influence of drug-transporter polymorphisms on the pharmacokinetics of fexofenadine enantiomers. Xenobiotica 2010; 40:782-9.

Bachmakov I, Glaeser H, Fromm MF, König J. Interaction of oral antidiabetic drugs with hepatic uptake transporters: focus on organic anion transporting polypeptides and organic cation transporter 1. Diabetes 2008; 57:1463-9.

Grube M, Köck K, Oswald S et al. Organic anion transporting polypeptide 2B1 is a high-affinity transporter for atorvastatin and is expressed in the human heart. Clin Pharmacol Ther 2006; 80:607-20.

Lima JJ, Blake KV, Tantisira KG, Weiss ST. Pharmacogenetics of asthma. Curr Opin Pulm Med 2009; 15:57-62.

Lu WJ, Huang JD, Lai ML. The effects of ergoloid mesylates and ginkgo biloba on the pharmacokinetics of ticlopidine. J Clin Pharmacol 2006; 46:628-34.

Mougey EB, Feng H, Castro M, Irvin CG, Lima JJ. Absorption of montelukast is transporter mediated: a common variant of OATP2B1 is associated with reduced plasma concentrations and poor response. Pharmacogenet Genomics 2009; 19:129-38.

Niemi M. Transporter pharmacogenetics and statin toxicity. Clin Pharmacol Ther 2010; 87:130-3.

Oswald S, König J, Lütjohann D et al. Disposition of ezetimibe is influenced by polymorphisms of the hepatic uptake carrier OATP1B1. Pharmacogenet Genomics 2008; 18:559-68.

van Giersbergen PL, Treiber A, Schneiter R, Dietrich H, Dingemanse J. Inhibitory and inductive effects of rifampin on the pharmacokinetics of bosentan in healthy subjects. Clin Pharmacol Ther 2007; 81:414-9.

SNAP25 (synaptosomal-associated protein, 25kDa)

Faraone SV, Khan SA. Candidate gene studies of attention-deficit/hyperactivity disorder. J Clin Psychiatry 2006; 67:13-20.

Mahendroo MS, Cala KM, Hess DL, Russell DW. Unexpected virilization in male mice lacking steroid 5 alpha-reductase enzymes. Endocrinology 2001; 142:4652-62.

McGough J, McCracken J, Swanson J et al. Pharmacogenetics of methylphenidate response in preschoolers with ADHD. J Am Acad Child Adolesc Psychiatry 2006; 45:1314-22.

Müller DJ, Kennedy JL. Genetics of antipsychotic treatment emergent weight gain in schizophrenia. Pharmacogenomics 2006; 7:863-87.

Tafoya LC, Mameli M, Miyashita T, Guzowski JF, Valenzuela CF, Wilson MC. Expression and function of SNAP-25 as a universal SNARE component in GABAergic neurons. J Neurosci 2006; 26:7826-38.

SNCA (synuclein, alpha (non A4 component of amyloid precursor))

Al-Chalabi A, Dürr A, Wood NW et al. Genetic variants of the alpha-synuclein gene SNCA are associated with multiple system atrophy. PLoS One 2009. doi:10. 1371/journal. pone. 0007114.

Alves da Costa C, Dunys J, Brau F, Wilk S, Cappai R, Checler F. 6-Hydroxydopamine but not 1-methyl-4-phenylpyridinium abolishes alpha-synuclein anti-apoptotic phenotype by inhibiting its proteasomal degradation and by promoting its aggregation. J Biol Chem 2006; 281:9824-31.

Bönsch D, Lederer T, Reulbach U, Hothorn T, Kornhuber J, Bleich S. Joint analysis of the NACP-REP1 marker within the alpha synuclein gene concludes association with alcohol dependence. Hum Mol Genet 2005; 14:967-71.

Chung SJ, Armasu SM, Biernacka JM et al. Common variants in PARK loci and related genes and Parkinson’s disease. Mov Disord 2011; 26:280-8.

Goris A, Williams-Gray CH, Clark GR et al. Tau and alpha-synuclein in susceptibility to, and dementia in, Parkinson’s disease. Ann Neurol 2007; 62:145-53.

Ibáñez P, Lesage S, Janin S et al. Alpha-synuclein gene rearrangements in dominantly inherited parkinsonism: frequency, phenotype, and mechanisms. Arch Neurol 2009; 66:102-8.

Junn E, Mouradian MM. Human alpha-synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine. Neurosci Lett 2002; 320:146-50.

Kazmierczak A, Strosznajder JB, Adamczyk A. alpha-Synuclein enhances secretion and toxicity of amyloid beta peptides in PC12 cells. Neurochem Int 2008; 53:263-9.

Mamah CE, Lesnick TG, Lincoln SJ et al. Interaction of alpha-synuclein and tau genotypes in Parkinson’s disease. Ann Neurol 2005; 57:439-43.

Pals P, Lincoln S, Manning J et al. alpha-Synuclein promoter confers susceptibility to Parkinson’s disease. Ann Neurol 2004; 56:591-5.

Polymeropoulos MH, Lavedan C, Leroy E et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997; 276:2045-7.

Watson JB, Hatami A, David H et al. Alterations in corticostriatal synaptic plasticity in mice overexpressing human alpha-synuclein. Neuroscience 2009; 159:501-13.

Zarranz JJ, Alegre J, Gómez-Esteban JC et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 2004; 55:164-73.

SOD2 (superoxide dismutase 2, mitochondrial)

Broyl A, Corthals SL, Jongen JL et al. Mechanisms of peripheral neuropathy associated with bortezomib and vincristine in patients with newly diagnosed multiple myeloma: a prospective analysis of data from the HOVON-65/GMMG-HD4 trial. Lancet Oncol 2010; 11:1057-65.

Glynn SA, Boersma BJ, Howe TM et al. A mitochondrial target sequence polymorphism in manganese superoxide dismutase predicts inferior survival in breast cancer patients treated with cyclophosphamide. Clin Cancer Res 2009; 15:4165-73.

Hiroi S, Harada H, Nishi H, Satoh M, Nagai R, Kimura A. Polymorphisms in the SOD2 and HLA-DRB1 genes are associated with nonfamilial idiopathic dilated cardiomyopathy in Japanese. Biochem Biophys Res Commun 1999; 261:332-9.

Jones DA, Prior SL, Tang TS et al. Association between the rs4880 superoxide dismutase 2 (C>T) gene variant and coronary heart disease in diabetes mellitus. Diabetes Res Clin Pract 2010; 90:196-201.

Kinnula K, Linnainmaa K, Raivio KO, Kinnula VL. Endogenous antioxidant enzymes and glutathione S-transferase in protection of mesothelioma cells against hydrogen peroxide and epirubicin toxicity. Br J Cancer 1998; 77:1097-102.

Li H, Kantoff PW, Giovannucci E et al. Manganese superoxide dismutase polymorphism, prediagnostic antioxidant status, and risk of clinical significant prostate cancer. Cancer Res 2005; 65:2498-504.

Mollsten A, Marklund SL, Wessman M et al. A functional polymorphism in the manganese superoxide dismutase gene and diabetic nephropathy. Diabetes 2007; 56:265-9.

Nakanishi S, Yamane K, Ohishi W et al. Manganese superoxide dismutase Ala16Val polymorphism is associated with the development of type 2 diabetes in Japanese-Americans. Diabetes Res Clin Pract 2008; 81:381-5.

Nomiyama T, Tanaka Y, Piao L et al. The polymorphism of manganese superoxide dismutase is associated with diabetic nephropathy in Japanese type 2 diabetic patients. J Hum Genet 2003; 48:138-41.

Seznec H, Simon D, Bouton C et al. Friedreich ataxia: the oxidative stress paradox. Hum Mol Genet 2005; 14:463-74.

Sgambato A, Camerini A, Collecchi P et al. Cyclin E correlates with manganese superoxide dismutase expression and predicts survival in early breast cancer patients receiving adjuvant epirubicin-based chemotherapy. Cancer Sci 2009; 100:1026-33.

Wiener HW, Perry RT, Chen Z, Harrell LE, Go RC. A polymorphism in SOD2 is associated with development of Alzheimer’s disease. Genes Brain Behav 2007; 6:770-5.

Yi JF, Li YM, Liu T et al. Mn-SOD and CuZn-SOD polymorphisms and interactions with risk factors in gastric cancer. World J Gastroenterol 2010; 16:4738-46.

Yoshikawa Y, Morita M, Hosomi H et al. Knockdown of superoxide dismutase 2 enhances acetaminophen-induced hepatotoxicity in rat. Toxicology 2009; 264:89-95.

Zhang ZJ, Zhang XB, Hou G, Yao H, Reynolds GP. Interaction between polymorphisms of the dopamine D3 receptor and manganese superoxide dismutase genes in susceptibility to tardive dyskinesia. Psychiatr Genet 2003; 13:187-92.

SOD3 (superoxide dismutase 3, extracellular)

Hu D, Serrano F, Oury TD, Klann E. Aging-dependent alterations in synaptic plasticity and memory in mice that overexpress extracellular superoxide dismutase. J Neurosci 2006; 26:3933-41.

Juul K, Tybjaerg-Hansen A, Marklund S et al. Genetically reduced antioxidative protection and increased ischemic heart disease risk: The Copenhagen City Heart Study. Circulation 2004; 109:59-65.

Lu Z, Xu X, Hu X et al. Extracellular superoxide dismutase deficiency exacerbates pressure overload-induced left ventricular hypertrophy and dysfunction. Hypertension 2008; 51:19-25.

Naganuma T, Nakayama T, Sato N et al. A haplotype-based case-control study examining human extracellular superoxide dismutase gene and essential hypertension. Hypertens Res 2008; 31:1533-40.

Zou Y, Chen CH, Fike JR, Huang TT. A new mouse model for temporal- and tissue-specific control of extracellular superoxide dismutase. Genesis 2009; 47:142-54.

SPG7 (spastic paraplegia 7 (pure and complicated autosomal recessive))

Casari G, de Fusco M, Ciarmatori S et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 1998; 93:973-83.

Deeken JF, Cormier T, Price DK et al. A pharmacogenetic study of docetaxel and thalidomide in patients with castration-resistant prostate cancer using the DMET genotyping platform. Pharmacogenomics J 2010; 10:191-9.

Elleuch N, Depienne C, Benomar A et al. Mutation analysis of the paraplegin gene (SPG7) in patients with hereditary spastic paraplegia. Neurology 2006; 66:654-9.

Pirozzi M, Quattrini A, Andolfi G et al. Intramuscular viral delivery of paraplegin rescues peripheral axonopathy in a model of hereditary spastic paraplegia. J Clin Invest 2006; 116:202-8.

SRD5A2 (steroid-5-alpha-reductase, alpha polypeptide 2 (3-oxo-5 alpha-steroid delta 4-dehydrogenase alpha 2))

Forti G, Falchetti A, Santoro S, Davis DL, Wilson JD, Russell DW. Steroid 5 alpha-reductase 2 deficiency: virilization in early infancy may be due to partial function of mutant enzyme. Clin Endocrinol 1996; 44:477-82.

Hochberg Z, Chayen R, Reiss N et al. Clinical, biochemical, and genetic findings in a large pedigree of male and female patients with 5 alpha-reductase 2 deficiency. J Clin Endocrinol Metab 1996; 81:2821-7.

Imperato-McGinley J, Gautier T, Peterson RE, Shackleton C. The prevalence of 5 alpha-reductase deficiency in children with ambiguous genitalia in the Dominican Republic. J Urol 1986; 136:867-73.

Imperato-McGinley J, Peterson RE, Stoller R, Goodwin WE. Male pseudohermaphroditism secondary to 17 beta-hydroxysteroid dehydrogenase deficiency: gender role change with puberty. J Clin Endocrinol Metab 1979; 49:391-5.

Maimoun L, Philibert P, Cammas B et al. Phenotypical, biological, and molecular heterogeneity of 5{alpha}-reductase deficiency: an extensive international experience of 55 patients. J Clin Endocrinol Metab 2011; 96:296-307.

Makridakis NM, Reichardt JK. Molecular epidemiology of androgen-metabolic loci in prostate cancer: predisposition and progression. J Urol 2004; 171:25-8.

Makridakis N, Reichardt JK. Pharmacogenetic analysis of human steroid 5 alpha reductase type II: comparison of finasteride and dutasteride. J Mol Endocrinol 2005; 34:617-23.

Morava E, Wevers RA, Cantagrel V et al. A novel cerebello-ocular syndrome with abnormal glycosylation due to abnormalities in dolichol metabolism. Brain 2010; 133:3210-20.

Nordenskjöld A, Ivarsson SA. Molecular characterization of 5 alpha-reductase type 2 deficiency and fertility in a Swedish family. J Clin Endocrinol Metab 1998; 83:3236-8.

Novelli G, Margiotti K, Chiocca AM, Spera E, Micali F, Reichardt JK. Pharmacogenetics of human androgens and prostate cancer-an update. Pharmacogenomics 2004; 5:283-94.

Sahu R, Boddula R, Sharma P et al. Genetic analysis of the SRD5A2 gene in Indian patients with 5alpha-reductase deficiency. J Pediatr Endocrinol Metab 2009; 22:247-54.

Sasaki G, Ogata T, Ishii T et al. Micropenis and the 5alpha-reductase-2 (SRD5A2) gene: mutation and V89L polymorphism analysis in 81 Japanese patients. J Clin Endocrinol Metab 2003; 88:3431-6.

Signorelli SS, Barresi V, Musso N et al. Polymorphisms of steroid 5-alpha-reductase type I (SRD5A1) gene are associated to peripheral arterial disease. J Endocrinol Invest 2008; 31:1092-7.

Söderström T, Wadelius M, Andersson SO et al. 5alpha-reductase 2 polymorphisms as risk factors in prostate cancer. Pharmacogenetics 2002; 12:307-12.

Steen NE, Tesli M, Kähler AK et al. SRD5A2 is associated with increased cortisol metabolism in schizophrenia spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1500-6.

Thigpen AE, Davis DL, Milatovich A et al. Molecular genetics of steroid 5 alpha-reductase 2 deficiency. J Clin Invest 1992; 90:799-809.

SSTR2 (somatostatin receptor 2)

Rong W, Winchester WJ, Grundy D. Spontaneous hypersensitivity in mesenteric afferent nerves of mice deficient in the sst2 subtype of somatostatin receptor. J Physiol 2007; 581:779-86.

Sotos-Prieto M, Guillén M, Guillem-Sáiz P, Portolés O, Corella D. The rs1466113 polymorphism in the somatostatin receptor 2 gene is associated with obesity and food intake in a Mediterranean population. Ann Nutr Metab 2010; 57:124-31.

Stumm RK, Zhou C, Schulz S et al. Somatostatin receptor 2 is activated in cortical neurons and contributes to neurodegeneration after focal ischemia. J Neurosci 2004; 24:11404-15.

Sutton BS, Palmer ND, Langefeld CD et al. Association of SSTR2 polymorphisms and glucose homeostasis phenotypes: the Insulin Resistance Atherosclerosis Family Study Diabetes 2009; 58:1457-62.

SSTR5 (somatostatin receptor 5)

Ballarè E, Persani L, Lania AG et al. Mutation of somatostatin receptor type 5 in an acromegalic patient resistant to somatostatin analog treatment. J Clin Endocrinol Metab 2001; 86:3809-14.

Barnby G, Abbott A, Sykes N et al. Candidate-gene screening and association analysis at the autism-susceptibility locus on chromosome 16p: evidence of association at GRIN2A and ABAT. Am J Hum Genet 2005; 76:950-66.

Canzian F, McKay JD, Cleveland RJ et al. Genetic variation in the growth hormone synthesis pathway in relation to circulating insulin-like growth factor-I, insulin-like growth factor binding protein-3, and breast cancer risk: results from the European prospective investigation into cancer and nutrition study. Cancer Epidemiol Biomarkers Prev 2005; 14:2316-25.

Filopanti M, Ronchi C, Ballarè E et al. Analysis of somatostatin receptors 2 and 5 polymorphisms in patients with acromegaly. J Clin Endocrinol Metab 2005; 90:4824-8.

Johansson M, McKay JD, Wiklund F et al. Genetic variation in the SST gene and its receptors in relation to circulating levels of insulin-like growth factor-I, IGFBP3, and prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2009; 18:1644-50.

Li D, Tanaka M, Brunicardi FC, Fisher WE, Gibbs RA, Gingras MC. Association between somatostatin receptor 5 gene polymorphisms and pancreatic cancer risk and survival. Cancer 2011; 117:2863-72.

STAT3 (signal transducer and activator of transcription 3 (acute-phase response factor))

Barbieri I, Pensa S, Pannellini T et al. Constitutively active Stat3 enhances neu-mediated migration and metastasis in mammary tumors via upregulation of Cten. Cancer Res 2010; 70:2558-67.

Blando JM, Carbajal S, Abel E et al. Cooperation between Stat3 and Akt signaling leads to prostate tumor development in transgenic mice. Neoplasia 2011; 13:254-65.

Cénit MC, Alcina A, Márquez A et al. STAT3 locus in inflammatory bowel disease and multiple sclerosis susceptibility. Genes Immun 2010; 11:264-8.

Davidson SI, Liu Y, Danoy PA et al. Association of STAT3 and TNFRSF1A with ankylosing spondylitis in Han Chinese. Ann Rheum Dis 2011; 70:289-92.

Demaria M, Giorgi C, Lebiedzinska M et al. A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging 2010; 2:823-42.

Finan RR, Mustafa FE, Al-Zaman I, Madan S, Issa AA, Almawi WY. STAT3 polymorphisms linked with idiopathic recurrent miscarriages. Am J Reprod Immunol 2010; 63:22-7.

Kreil S, Waghorn K, Ernst T et al. A polymorphism associated with STAT3 expression and response of chronic myeloid leukemia to interferon alpha. Haematologica 2010; 95:148-52.

Mancuso P, Peters-Golden M, Goel D et al. Disruption of leptin receptor-STAT3 signaling enhances leukotriene production and pulmonary host defense against pneumococcal pneumonia. J Immunol 2011; 186:1081-90.

Melillo JA, Song L, Bhagat G et al. Dendritic cell (DC)-specific targeting reveals Stat3 as a negative regulator of DC function. J Immunol 2010; 184:2638-45.

Miyoshi K, Takaishi M, Nakajima K et al. Stat3 as a therapeutic target for the treatment of psoriasis: a clinical feasibility study with STA-21, a Stat3 inhibitor. J Invest Dermatol 2011; 131:108-17.

Stritesky GL, Muthukrishnan R, Sehra S et al. The transcription factor STAT3 is required for T helper 2 cell development. Immunity 2011; 34:39-49.

Wan J, Fu AK, Ip FC et al. Tyk2/STAT3 signaling mediates beta-amyloid-induced neuronal cell death: implications in Alzheimer’s disease. J Neurosci 2010; 30:6873-81.

Zhang W, Chan RJ, Chen H et al. Negative regulation of Stat3 by activating PTPN11 mutants contributes to the pathogenesis of Noonan syndrome and juvenile myelomonocytic leukemia. J Biol Chem 2009; 284:22353-63.

SULT1A1 (sulfotransferase family, cytosolic, 1A, phenol-preferring, member 1)

Coughtrie MWH, Gilissen RA, Shek B et al. Phenol sulphotransferase SULT1A1 polymorphism: molecular diagnosis and allele frequencies in Caucasian and African populations. Biochem J 1999; 337:45-9.

Dooley TP, Huang Z. Genomic organization and DNA sequences of two human phenol sulfotransferase genes (STP1 and STP2) on the short arm of chromosome 16. Biochem Biophys Res Commun 1996; 228:134-40.

Gjerde J, Hauglid M, Breilid H et al. Effects of CYP2D6 and SULT1A1 genotypes including SULT1A1 gene copy number on tamoxifen metabolism. Ann Oncol 2008; 19:56-61.

Hildebrandt MA, Carrington DP, Thomae BA et al. Genetic diversity and function in the human cytosolic sulfotransferases. Pharmacogenomics J 2007; 7:133-43.

Jiang Y, Zhou L, Yan T, Shen Z, Shao Z, Lu J. Association of sulfotransferase SULT1A1 with breast cancer risk: a meta-analysis of case-control studies with subgroups of ethnic and menopausal statue. J Exp Clin Cancer Res 2010; 29:101.

Kester MHA, Kaptein E, Roest TJ et al. Characterization of human iodothyronine sulfotransferases. J Clin Enodcr Metab 1999; 84:1357-64.

Nagar S, Walther S, Blanchard RL. Sulfotransferase (SULT) 1A1 polymorphic variants *1, *2, and *3 are associated with altered enzymatic activity, cellular phenotype, and protein degradation. Mol Pharmacol 2006; 69:2084-92.

Raftogianis RB, Her C, Weinshilboum RM. Human phenol sulfotransferase pharmacogenetics: STP1 gene cloning and structural characterization. Pharmacogenetics 1996; 6:473-87.

Stearns V, Davidson NE, Flockhart DA. Pharmacogenetics in the treatment of breast cancer. Pharmacogenomics J 2004; 4:143-53.

Zheng Q, Sha X, Liu J, Heath E, Lorusso P, Li J. Association of human cytochrome P450 1A1 (CYP1A1) and sulfotransferase 1A1 (SULT1A1) polymorphisms with differential metabolism and cytotoxicity of aminoflavone. Mol Cancer Ther 2010; 9:2803-13.

SULT1A2 (sulfotransferase family, cytosolic, 1A, phenol-preferring, member 2)

Brand W, Boersma MG, Bik H et al. Phase II metabolism of hesperetin by individual UDP-glucuronosyltransferases and sulfotransferases and rat and human tissue samples. Drug Metab Dispos 2010; 38:617-25.

Hirata H, Hinoda Y, Okayama N et al. CYP1A1, SULT1A1, and SULT1E1 polymorphisms are risk factors for endometrial cancer susceptibility. Cancer 2008; 112:1964-73.

Lu J, Li H, Zhang J et al. Crystal structures of SULT1A2 and SULT1A1 *3: insights into the substrate inhibition and the role of Tyr149 in SULT1A2. Biochem Biophys Res Commun 2010; 396:429-34.

Miksits M, Wlcek K, Svoboda M et al. Expression of sulfotransferases and sulfatases in human breast cancer: impact on resveratrol metabolism. Cancer Lett 2010; 289:237-45.

Wang L, Raghavan N, He K et al. Sulfation of o-demethyl apixaban: enzyme identification and species comparison. Drug Metab Dispos 2009; 37:802-8.

SULT1A3 (sulfotransferase family, cytosolic, 1A, phenol-preferring, member 3)

Adjei AA, Gaedigk A, Simon SD, Weinshilboum RM, Leeder JS. Interindividual variability in acetaminophen sulfation by human fetal liver: implications for pharmacogenetic investigations of drug-induced birth defects. Birth Defects Res A Clin Mol Teratol 2008; 82:155-65.

Dajani R, Hood AM, Coughtrie MW. A single amino acid, glu146, governs the substrate specificity of a human dopamine sulfotransferase, SULT1A3. Mol Pharmacol 1998; 54:942-8.

Dubin RL, Hall CM, Pileri CL et al. Thermostable (SULT1A1) and thermolabile (SULT1A3) phenol sulfotransferases in human osteosarcoma and osteoblast cells. Bone 2001; 28:617-24.

Ebmeier CC, Anderson RJ. Human thyroid phenol sulfotransferase enzymes 1A1 and 1A3: activities in normal and diseased thyroid glands, and inhibition by thyroid hormones and phytoestrogens. J Clin Endocrinol Metab 2004; 89:5597-605.

Hildebrandt MA, Salavaggione OE, Martin YN et al. Human SULT1A3 pharmacogenetics: gene duplication and functional genomic studies. Biochem Biophys Res Commun 2004; 321:870-8.

Nagai M, Fukamachi T, Tsujimoto M et al. Inhibitory effects of herbal extracts on the activity of human sulfotransferase isoform sulfotransferase 1A3 (SULT1A3). Biol Pharm Bull 2009; 32:105-9.

Pai TG, Oxendine I, Sugahara T, Suiko M, Sakakibara Y, Liu MC. Structure-function relationships in the stereospecific and manganese-dependent 3,4-dihydroxyphenylalanine/tyrosine-sulfating activity of human monoamine-form phenol sulfotransferase, SULT1A3. J Biol Chem 2003; 278:1525-32.

Thomae BA, Rifki OF, Theobald MA, Eckloff BW, Wieben ED, Weinshilboum RM. Human catecholamine sulfotransferase (SULT1A3) pharmacogenetics: functional genetic polymorphism. J Neurochem 2003; 87:809-19.

SULT1C2 (sulfotransferase family, cytosolic, 1C, member 2)

Deeken JF, Cormier T, Price DK et al. A pharmacogenetic study of docetaxel and thalidomide in patients with castration-resistant prostate cancer using the DMET genotyping platform. Pharmacogenomics J 2010; 10:191-9.

Monzo M, Brunet S, Urbano-Ispizua A et al. Genomic polymorphisms provide prognostic information in intermediate-risk acute myeloblastic leukemia. Blood 2006; 107:4871-9.

SULT1E1 (sulfotransferase family 1E, estrogen-preferring, member 1)

Adjei AA, Gaedigk A, Simon SD, Weinshilboum RM, Leeder JS. Interindividual variability in acetaminophen sulfation by human fetal liver: implications for pharmacogenetic investigations of drug-induced birth defects. Birth Defects Res A Clin Mol Teratol 2008; 82:155-65.

Adjei AA, Thomae BA, Prondzinski JL, Eckloff BW, Wieben ED, Weinshilboum RM. Human estrogen sulfotransferase (SULT1E1) pharmacogenomics: gene resequencing and functional genomics. Br J Pharmacol 2003; 139:1373-82.

Choi JY, Lee KM, Park SK et al. Genetic polymorphisms of SULT1A1 and SULT1E1 and the risk and survival of breast cancer. Cancer Epidemiol Biomarkers Prev 2005; 14:1090-5.

Gong H, Jarzynka MJ, Cole TJ et al. Glucocorticoids antagonize estrogens by glucocorticoid receptor-mediated activation of estrogen sulfotransferase. Cancer Res 2008; 68:7386-93.

Gong H, Guo P, Zhai Y et al. Estrogen deprivation and inhibition of breast cancer growth in vivo through activation of the orphan nuclear receptor liver X receptor. Mol Endocrinol 2007; 21:1781-90.

Tong MH, Jiang H, Liu P, Lawson JA, Brass LF, Song WC. Spontaneous fetal loss caused by placental thrombosis in estrogen sulfotransferase-deficient mice. Nat Med 2005; 11:153-9.

Ung D, Nagar S. Variable sulfation of dietary polyphenols by recombinant human sulfotransferase (SULT) 1A1 genetic variants and SULT1E1. Drug Metab Dispos 2007; 35:740-6.

 A B C D E F G H I K L M N O P R S T U V W X Z