Gene References

A B C D E F G H I K L M N O P R S T U V W X Z

HBB (hemoglobin, beta)

Alebouyeh M, Moussavi F, Haddad-Deylami H, Vossough P. Hydroxyurea in the treatment of major beta-thalassemia and importance of genetic screening. Ann Hematol 2004; 83:430-3.

Cao A, Galanello R. Beta-thalassemia. Genet Med 2010; 12:61-76.

He Z, Hu Y, Feng L et al. Polymorphisms in the HBB gene relate to individual cardiorespiratory adaptation in response to endurance training. Br J Sports Med 2006; 40:998-1002.

Koren A, Levin C, Dgany O et al. Response to hydroxyurea therapy in beta-thalassemia. Am J Hematol 2008; 83:366-70.

Patrinos GP, Grosveld FG. Pharmacogenomics and therapeutics of hemoglobinopathies. Hemoglobin 2008; 32:229-36.

Rivella S, May C, Chadburn A, Rivière I, Sadelain M. A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human beta-globin gene transfer. Blood 2003; 101:2932-9.

Winichagoon P, Fucharoen S, Chen P, Wasi P. Genetic factors affecting clinical severity in beta-thalassemia syndromes. J Pediatr Hematol Oncol 2000; 22:573-80.

Xie S, Li W, Ren Z et al. Amelioration of beta654-thalassemia in mouse model with the knockdown of aberrantly spliced beta-globin mRNA. J Genet Genomics 2008; 35:595-601.

Yavarian M, Karimi M, Bakker E, Harteveld CL, Giordano PC. Response to hydroxyurea treatment in Iranian transfusion-dependent beta-thalassemia patients. Haematologica 2004; 89:1172-8.

HCP5 (HLA complex P5)

Catano G, Kulkarni H, He W et al. HIV-1 disease-influencing effects associated with ZNRD1, HCP5 and HLA-C alleles are attributable mainly to either HLA-A10 or HLA-B*57 alleles. PLoS One 2008. doi:10. 1371/journal. pone. 0003636.

Colombo S, Rauch A, Rotger M et al. The HCP5 single-nucleotide polymorphism: a simple screening tool for prediction of hypersensitivity reaction to abacavir. J Infect Dis 2008; 198:864-7.

Daly AK, Donaldson PT, Bhatnagar P et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 2009; 41:816-9.

Limou S, Le Clerc S, Coulonges C et al. Genomewide association study of an AIDS-nonprogression cohort emphasizes the role played by HLA genes (ANRS Genomewide Association Study 02). J Infect Dis 2009; 199:419-26.

Liu Y, Helms C, Liao W et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet 2008. doi:10. 1371/journal. pgen. 1000041.

Martin AM, Krueger R, Almeida CA, Nolan D, Phillips E, Mallal S. A sensitive and rapid alternative to HLA typing as a genetic screening test for abacavir hypersensitivity syndrome. Pharmacogenet Genomics 2006; 16:353-7.

van Manen D, Kootstra NA, Boeser-Nunnink B, Handulle MA, van’t Wout AB, Schuitemaker H. Association of HLA-C and HCP5 gene regions with the clinical course of HIV-1 infection. AIDS 2009; 23:19-28.

HFE (hemochromatosis)

Aamodt AH, Stovner LJ, Thorstensen K, Lydersen S, White LR, Aasly JO. Prevalence of haemochromatosis gene mutations in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2007; 78:315-7.

Biasiotto G, Goldwurm S, Finazzi D et al. HFE gene mutations in a population of Italian Parkinson’s disease patients. Parkinsonism Relat Disord 2008; 14:426-30.

Bonkovsky HL, Naishadham D, Lambrecht RW et al. Roles of iron and HFE mutations on severity and response to therapy during retreatment of advanced chronic hepatitis C. Gastroenterology 2006; 131:1440-51.

Cantonwine D, Hu H, Téllez-Rojo MM et al. HFE gene variants modify the association between maternal lead burden and infant birthweight: a prospective birth cohort study in Mexico City, Mexico. Environ Health 2010; 9:43.

Colli ML, Gross JL, Canani LH. Mutation H63D in the HFE gene confers risk for the development of type 2 diabetes mellitus but not for chronic complications. J Diabetes Complications 2011; 25:25-30.

Connor JR, Lee SY. HFE mutations and Alzheimer’s disease. J Alzheimers Dis 2006; 10:267-76.

Correia AP, Pinto JP, Dias V, Mascarenhas C, Almeida S, Porto G. CAT53 and HFE alleles in Alzheimer’s disease: a putative protective role of the C282Y HFE mutation. Neurosci Lett 2009; 457:129-32.

Dorak MT, Burnett AK, Worwood M. Hemochromatosis gene in leukemia and lymphoma. Leuk Lymphoma 2002; 43:467-77.

Dorak MT, Burnett AK, Worwood M. HFE gene mutations in susceptibility to childhood leukemia: HuGE review. Genet Med 2005; 7:159-68.

Gutiérrez L, Quintana C, Patiño C et al. Iron speciation study in Hfe knockout mice tissues: magnetic and ultrastructural characterisation. Biochim Biophys Acta 2009; 1792:541-7.

Halling J, Petersen MS, Grandjean P, Weihe P, Brosen K. Genetic predisposition to Parkinson’s disease: CYP2D6 and HFE in the Faroe Islands. Pharmacogenet Genomics 2008; 18:209-12.

Hanson EH, Imperatore G, Burke W. HFE gene and hereditary hemochromatosis: a HuGE review. Human Genome Epidemiology. Am J Epidemiol 2001; 154:193-206.

Hulgan T, Tebas P, Canter JA et al. AIDS Clinical Trials Group 384 and A5005s Study Teams. Hemochromatosis gene polymorphisms, mitochondrial haplogroups, and peripheral lipoatrophy during antiretroviral therapy. J Infect Dis 2008; 197:858-66.

Jacolot S, Yang Y, Paitry P, Férec C, Mura C. Iron metabolism in macrophages from HFE hemochromatosis patients. Mol Genet Metab 2010; 101:258-67.

Kallianpur AR, Hulgan T, Canter JA et al. Hemochromatosis (HFE) gene mutations and peripheral neuropathy during antiretroviral therapy. AIDS 2006; 20:1503-13.

Moirand R, Jouanolle AM, Brissot P, Le Gall JY, David V, Deugnier Y. Phenotypic expression of HFE mutations: a French study of 1110 unrelated iron-overloaded patients and relatives. Gastroenterology 1999; 116:372-7.

Nearman ZP, Szpurka H, Serio B et al. Hemochromatosis-associated gene mutations in patients with myelodysplastic syndromes with refractory anemia with ringed sideroblasts. Am J Hematol 2007; 82:1076-9.

Nie L, Li L, Yang L, Zhang Y, Xiao Z. HFE genotype and iron metabolism in Chinese patients with myelodysplastic syndromes and aplastic anemia. Ann Hematol 2010; 89:1249-53.

Robinson JP, Johnson VL, Rogers PA et al. Evidence for an association between compound heterozygosity for germ line mutations in the hemochromatosis (HFE) gene and increased risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 2005; 14:1460-3.

Roe MA, Heath AL, Oyston SL et al. Iron absorption in male C282Y heterozygotes. Am J Clin Nutr 2005; 81:814-21.

Shi Z, Johnstone D, Talseth-Palmer BA et al. Haemochromatosis HFE gene polymorphisms as potential modifiers of hereditary nonpolyposis colorectal cancer risk and onset age. Int J Cancer 2009; 125:78-83.

Tung BY, Emond MJ, Bronner MP, Raaka SD, Cotler SJ, Kowdley KV. Hepatitis C, iron status, and disease severity: relationship with HFE mutations. Gastroenterology 2003; 124:318-26.

Valenti L, Valenti G, Como G et al. HFE genotype influences erythropoiesis support requirement in hemodialysis patients: a prospective study. Am J Nephrol 2008; 28:311-6.

Waheed A, Grubb JH, Zhou XY et al. Regulation of transferrin-mediated iron uptake by HFE, the protein defective in hereditary hemochromatosis. Proc Natl Acad Sci USA 2002; 99:3117-22.

Zhang A, Park SK, Wright RO et al. HFE H63D polymorphism as a modifier of the effect of cumulative lead exposure on pulse pressure: the Normative Aging Study. Environ Health Perspect 2010; 118:1261-6.

HLA-A (major histocompatibility complex, class I, A)

Bergamaschi L, Leone MA, Fasano ME et al. HLA-class I markers and multiple sclerosis susceptibility in the Italian population. Genes Immun 2010; 11:173-80.

Brennan RM, Burrows SR. A mechanism for the HLA-A*01-associated risk for EBV+ Hodgkin lymphoma and infectious mononucleosis. Blood 2008; 112:2589-90.

Brynedal B, Duvefelt K, Jonasdottir G et al. HLA-A confers an HLA-DRB1 independent influence on the risk of multiple sclerosis. PLoS One 2007. doi:10. 1371/journal. pone. 0000664.

Carrington M, Nelson GW, Martin MP et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 1999; 283:1748-52.

Fellerhoff B, Laumbacher B, Mueller N, Gu S, Wank R. Associations between Chlamydophila infections, schizophrenia and risk of HLA-A10. Mol Psychiatry 2007; 12:264-72.

Fialho RN, Martins L, Pinheiro JP et al. Role of human leukocyte antigen, killer-cell immunoglobulin-like receptors, and cytokine gene polymorphisms in leptospirosis. Hum Immunol 2009; 70:915-20.

Firat H, Tourdot S, Ureta-Vidal A et al. Design of a polyepitope construct for the induction of HLA-A0201-restricted HIV 1-specific CTL responses using HLA-A*0201 transgenic, H-2 class I KO mice. Eur J Immunol 2001; 31:3064-74.

Hirata K, Takagi H, Yamamoto M et al. Ticlopidine-induced hepatotoxicity is associated with specific human leukocyte antigen genomic subtypes in Japanese patients: a preliminary case-control study. Pharmacogenomics J 2008; 8:29-33.

Hu SP, Zhou GB, Luan JA et al. Polymorphisms of HLA-A and HLA-B genes in genetic susceptibility to esophageal carcinoma in Chaoshan Han Chinese. Dis Esophagus 2010; 23:46-52.

Huang X, Ling H, Feng L et al. Human leukocyte antigen profile in HIV-1 infected individuals and AIDS patients from Chongqing, China. Microbiol Immunol 2009; 53:512-23.

Huang X, Ling H, Mao W et al. Association of HLA-A, B, DRB1 alleles and haplotypes with HIV-1 infection in Chongqing, China. BMC Infect Dis 2009; 9:201.

Hung SI, Chung WH, Jee SH et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genomics 2006; 16:297-306.

Laumbacher B, Müller N, Bondy B et al. Significant frequency deviation of the class I polymorphism HLA-A10 in schizophrenic patients. J Med Genet 2003; 40:217-9.

Lawlor DA, Ward FE, Ennis PD, Jackson AP, Parham P. HLA-A and B polymorphisms predate the divergence of humans and chimpanzees. Nature 1988; 335:268-71.

Li Y, Fu L, Wong AM et al. Identification of genes with allelic imbalance on 6p associated with nasopharyngeal carcinoma in southern Chinese. PLoS One 2011. doi:10. 1371/journal. pone. 0014562.

MacDonald KS, Fowke KR, Kimani J et al. Influence of HLA supertypes on susceptibility and resistance to human immunodeficiency virus type 1 infection. J Infect Dis 2000; 181:1581-9.

McAulay KA, Higgins CD, Macsween KF et al. HLA class I polymorphisms are associated with development of infectious mononucleosis upon primary EBV infection. J Clin Invest 2007; 117:3042-8.

Nakanishi K, Saitoh S. Clinical and genetic characteristics of patients with type 1 diabetes associated with interferon therapy. Diabetes Care 2011; 34:471-3.

Ovsyannikova IG, Jacobson RM, Ryan JE, Dhiman N, Vierkant RA, Poland GA. Relationship between HLA polymorphisms and gamma interferon and interleukin-10 cytokine production in healthy individuals after rubella vaccination. Clin Vaccine Immunol 2007; 14:115-22.

Ovsyannikova IG, Jacobson RM, Vierkant RA, Shane Pankratz V, Jacobsen SJ, Poland GA. Associations between human leukocyte antigen (HLA) alleles and very high levels of measles antibody following vaccination. Vaccine 2004; 22:1914-20.

Payami H, Schellenberg GD, Zareparsi S et al. Evidence for association of HLA-A2 allele with onset age of Alzheimer’s disease. Neurology 1997; 49:512-8.

Poland GA, Ovsyannikova IG, Jacobson RM. Immunogenetics of seasonal influenza vaccine response. Vaccine 2008; 26 Suppl 4:35-40.

Poland GA, Ovsyannikova IG, Jacobson RM. Application of pharmacogenomics to vaccines. Pharmacogenomics 2009; 10:837-52.

Robinson J, Waller MJ, Fail SC, Marsh SG. The IMGT/HLA and IPD databases. Hum Mutat 2006; 27:1192-9.

Salvarani C, Zizzi F, Macchioni P et al. Clinical response to auranofin in patients with psoriatic arthritis. Clin Rheumatol 1989; 8:54-7.

Singh B, Banerjee S, Bera NK, Nayak CR, Chaudhuri TK. Analysis of the role of human leukocyte antigen class-I genes to understand the etiopathology of schizophrenia. Indian J Psychiatry 2008; 50:166-70.

Stephens HA. HLA and other gene associations with dengue disease severity. Curr Top Microbiol Immunol 2010; 338:99-114.

Szpak Y, Vieville JC, Tabary T et al. Spontaneous retinopathy in HLA-A29 transgenic mice. Proc Natl Acad Sci USA 2001; 98:2572-6.

Takahashi M, Kimura A. HLA and CTLA4 polymorphisms may confer a synergistic risk in the susceptibility to Graves’ disease. J Hum Genet 2010; 55:323-6.

Taneichi K, Watanabe I, Sakai I, Shibaki H. Association of immunomodulators and HLA antigens in rheumatoid arthritis. Ryumachi 1989; 29:358-64.

Ueta M, Sotozono C, Tokunaga K, Yabe T, Kinoshita S. Strong association between HLA-A*0206 and Stevens-Johnson syndrome in the Japanese. Am J Ophthalmol 2007; 143:367-8.

Ueta M, Tokunaga K, Sotozono C et al. HLA class I and II gene polymorphisms in Stevens-Johnson syndrome with ocular complications in Japanese. Mol Vis 2008; 14:550-5.

Yang L, Wang LJ, Shi GL et al. Analysis of HLA-A, HLA-B and HLA-DRB1 alleles in Chinese patients with lung cancer. Genet Mol Res 2010; 9:750-5.

Zareparsi S, James DM, Kaye JA, Bird TD, Schellenberg GD, Payami H. HLA-A2 homozygosity but not heterozygosity is associated with Alzheimer disease. Neurology 2002; 58:973-5.

HLA-B (major histocompatibility complex, class I, B)

Arrizabalaga J, Rodriguez-Alcántara F, Castañer JL et al. Prevalence of HLA-B*5701 in HIV-infected patients in Spain (results of the EPI Study). HIV Clin Trials 2009; 10:48-51.

Carrington M, Nelson GW, Martin MP et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 1999; 283:1748-52.

Chung WH, Hung SI, Hong HS et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature 2004; 428:486.

Colombo S, Rauch A, Rotger M et al. The HCP5 single-nucleotide polymorphism: A simple screening tool for prediction of hypersensitivity reaction to abacavir. J Infect Dis 2008; 198:864-7.

den Uyl D, van der Horst-Bruinsma IE, van Agtmael M. Progression of HIV to AIDS: a protective role for HLA-B27? AIDS Rev 2004; 6:89-96.

Farquhar C, Rowland-Jones S, Mbori-Ngacha D et al. Human leukocyte antigen (HLA) B*18 and protection against mother-to-child HIV type 1 transmission. AIDS Res Hum Retroviruses 2004; 20:692-7.

Ferrell PB Jr, McLeod HL. Carbamazepine, HLA-B*1502 and risk of Stevens-Johnson syndrome and toxic epidermal necrolysis: US FDA recommendations. Pharmacogenomics 2008; 9:1543-6.

Gao X, Bashirova A, Iversen AK et al. AIDS restriction HLA allotypes target distinct intervals of HIV-1 pathogenesis. Nat Med 2005; 11:1290-2.

Gao X, Nelson GW, Karacki P et al. Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS. N Engl J Med 2001; 344:1668-75.

Gao X, O’Brien TR, Welzel TM et al. HLA-B alleles associate consistently with HIV heterosexual transmission, viral load, and progression to AIDS, but not susceptibility to infection. AIDS 2010; 24:1835-40.

Ghosh K, Shankarkumar U, Shetty S, Mohanty D. Chronic synovitis and HLA B27 in patients with severe haemophilia. Lancet 2003; 361:933-4.

Goverdhan SV, Howell MW, Mullins RF et al. Association of HLA class I and class II polymorphisms with age-related macular degeneration. Invest Ophthalmol Vis Sci 2005; 46:1726-34.

Goverdhan SV, Khakoo SI, Gaston H, Chen X, Lotery AJ. Age-related macular degeneration is associated with the HLA-Cw*0701 Genotype and the natural killer cell receptor AA haplotype. Invest Ophthalmol Vis Sci 2008; 49:5077-82.

Hajeer AH, Sawidan FA, Bohlega S et al. HLA class I and class II polymorphisms in Saudi patients with myasthenia gravis. Int J Immunogenet 2009; 36:169-72

Hill AV, Allsopp CE, Kwiatkowski D et al. Common west African HLA antigens are associated with protection from severe malaria. Nature 1991; 352:595-600.

Hirata K, Takagi H, Yamamoto M et al. Ticlopidine-induced hepatotoxicity is associated with specific human leukocyte antigen genomic subtypes in Japanese patients: a preliminary case-control study. Pharmacogenomics J 2008; 8:29-33.

Howson JM, Walker NM, Clayton D, Todd JA; Type 1 Diabetes Genetics Consortium. Confirmation of HLA class II independent type 1 diabetes associations in the major histocompatibility complex including HLA-B and HLA-A. Diabetes Obes Metab 2009; 11 Suppl 1:31-45.

Hsieh YY, Lin YJ, Chang CC et al. Human lymphocyte antigen B-associated transcript 2, 3, and 5 polymorphisms and haplotypes are associated with susceptibility of Kawasaki disease and coronary artery aneurysm. J Clin Lab Anal 2010; 24:262-8.

Hu SP, Zhou GB, Luan JA et al. Polymorphisms of HLA-A and HLA-B genes in genetic susceptibility to esophageal carcinoma in Chaoshan Han Chinese. Dis Esophagus 2010; 23:46-52.

Hughes AR, Spreen WR, Mosteller M et al. Pharmacogenetics of hypersensitivity to abacavir: from PGx hypothesis to confirmation to clinical utility. Pharmacogenomics J 2008; 8:365-74.

Hughes S, Hughes A, Brothers C, Spreen W, Thorborn D; CNA106030 Study Team. PREDICT-1 (CNA106030): the first powered, prospective trial of pharmacogenetic screening to reduce drug adverse events. Pharm Stat 2008; 7:121-9.

Hung SI, Chung WH, Liou LB et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci USA 2005; 102:4134-9.

Littera R, Carcassi C, Masala A et al. HLA-dependent hypersensitivity to nevirapine in Sardinian HIV patients. AIDS 2006; 20:1621-6.

Locharernkul C, Loplumlert J, Limotai C et al. Carbamazepine and phenytoin induced Stevens-Johnson syndrome is associated with HLA-B*1502 allele in Thai population. Epilepsia 2008; 49:2087-91.

Lonjou C, Borot N, Sekula P et al. RegiSCAR study group. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics 2008; 18:99-107.

López de Castro JA. HLA-B27 and the pathogenesis of spondyloarthropathies. Immunol Lett 2007; 108:27-33.

Muñoz de Benito RM, Arribas López JR. Prospective validation of a pharmacogenetic test: the PREDICT-1 study. Enferm Infecc Microbiol Clin 2008; 26 Suppl 6:40-4.

Ovsyannikova IG, Jacobson RM, Ryan JE, Dhiman N, Vierkant RA, Poland GA. Relationship between HLA polymorphisms and gamma interferon and interleukin-10 cytokine production in healthy individuals after rubella vaccination. Clin Vaccine Immunol 2007; 14:115-22.

Ovsyannikova IG, Jacobson RM, Vierkant RA, Shane Pankratz V, Jacobsen SJ, Poland GA. Associations between human leukocyte antigen (HLA) alleles and very high levels of measles antibody following vaccination. Vaccine 2004; 22:1914-20.

Poland GA, Ovsyannikova IG, Jacobson RM. Application of pharmacogenomics to vaccines. Pharmacogenomics 2009; 10:837-52.

Rubin LA, Amos CI, Wade JA et al. Investigating the genetic basis for ankylosing spondylitis. Linkage studies with the major histocompatibility complex region. Arthritis Rheum 1994; 37:1212-20.

Schlienger RG, Shapiro LE, Shear NH. Lamotrigine-induced severe cutaneous adverse reactions. Epilepsia 1998; 39 Suppl 7:22-6.

Yang L, Wang LJ, Shi GL et al. Analysis of HLA-A, HLA-B and HLA-DRB1 alleles in Chinese patients with lung cancer. Genet Mol Res 2010; 9:750-5.

Zehbe I, Mytilineos J, Wikström I, Henriksen R, Edler L, Tommasino M. Association between human papillomavirus 16 E6 variants and human leukocyte antigen class I polymorphism in cervical cancer of Swedish women. Hum Immunol 2003; 64:538-42.

HLA-C (major histocompatibility complex, class I, C)

Carrington M, Nelson GW, Martin MP et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 1999; 283:1748-52.

Elder JT. PSORS1: linking genetics and immunology. J Invest Dermatol 2006; 126:1205-6.

Fellay J, Shianna KV, Ge D et al. A whole-genome association study of major determinants for host control of HIV-1. Science 2007; 317:944-7.

Feng BJ, Sun LD, Soltani-Arabshahi R et al. Multiple Loci within the major histocompatibility complex confer risk of psoriasis. PLoS Genet 2009. doi:10. 1371/journal. pgen. 1000606.

Fojtíková M, Stolfa J, Novota P, Cejková P, Dostál C, Cerná M. HLA-Cw*06 class I region rather than MICA is associated with psoriatic arthritis in Czech population. Rheumatol Int 2009; 29:1293-9.

Gatanaga H, Yazaki H, Tanuma J et al. HLA-Cw8 primarily associated with hypersensitivity to nevirapine. AIDS 2007; 21:264-5.

Goverdhan SV, Howell MW, Mullins RF et al. Association of HLA class I and class II polymorphisms with age-related macular degeneration. Invest Ophthalmol Vis Sci 2005; 46:1726-34.

Goverdhan SV, Khakoo SI, Gaston H, Chen X, Lotery AJ. Age-related macular degeneration is associated with the HLA-Cw*0701 Genotype and the natural killer cell receptor AA haplotype. Invest Ophthalmol Vis Sci 2008; 49:5077-82.

Gudjónsson JE, Kárason A, Antonsdóttir AA et al. HLA-Cw6-positive and HLA-Cw6-negative patients with Psoriasis vulgaris have distinct clinical features. J Invest Dermatol 2002; 118:362-5.

Ho PY, Barton A, Worthington J et al. Investigating the role of the HLA-Cw*06 and HLA-DRB1 genes in susceptibility to psoriatic arthritis: comparison with psoriasis and undifferentiated inflammatory arthritis. Ann Rheum Dis 2008; 67:677-82.

Jiao YL, Zhang BC, You L et al. Polymorphisms of KIR gene and HLA-C alleles: possible association with susceptibility to HLA-B27-positive patients with ankylosing spondylitis. J Clin Immunol 2010; 30:840-4.

Likanonsakul S, Rattanatham T, Feangvad S et al. HLA-Cw*04 allele associated with nevirapine-induced rash in HIV-infected Thai patients. AIDS Res Ther 2009; 6:22.

Littera R, Carcassi C, Masala A et al. HLA-dependent hypersensitivity to nevirapine in Sardinian HIV patients. AIDS 2006; 20:1621-6.

Martin MP, Borecki IB, Zhang Z et al. HLA-Cw group 1 ligands for KIR increase susceptibility to invasive cervical cancer. Immunogenetics 2010; 62:761-5.

Matucci A, Rossolillo P, Baroni M, Siccardi AG, Beretta A, Zipeto D. HLA-C increases HIV-1 infectivity and is associated with gp120. Retrovirology 2008; 5:68.

Nair RP, Stuart PE, Nistor I et al. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am J Hum Genet 2006; 78:827-51.

Nowak I, Malinowski A, Tchórzewski H et al. HLA-C C1C2 heterozygosity may protect women bearing the killer immunoglobulin-like receptor AA genotype from spontaneous abortion. J Reprod Immunol 2011; 88:32-7.

Ovsyannikova IG, Jacobson RM, Vierkant RA, Shane Pankratz V, Jacobsen SJ, Poland GA. Associations between human leukocyte antigen (HLA) alleles and very high levels of measles antibody following vaccination. Vaccine 2004; 22:1914-20.

Poland GA, Ovsyannikova IG, Jacobson RM. Application of pharmacogenomics to vaccines. Pharmacogenomics 2009; 10:837-52.

Queiro R, Gonzalez S, López-Larrea C et al. HLA-C locus alleles may modulate the clinical expression of psoriatic arthritis. Arthritis Res Ther 2006; 8:185.

Szczerkowska Dobosz A, Rebała K, Szczerkowska Z, Nedoszytko B. HLA-C locus alleles distribution in patients from northern Poland with psoriatic arthritis-preliminary report. Int J Immunogenet 2005; 32:389-91.

Szczerkowska-Dobosz A, Niespodziana K, Rebała K et al. Lack of association of HLA-C alleles with late-onset psoriasis in the northern Polish population. J Appl Genet 2007; 48:273-5.

Taneichi K, Watanabe I, Sakai I, Shibaki H. Association of immunomodulators and HLA antigens in rheumatoid arthritis. Ryumachi 1989; 29:358-64.

Thomas R, Apps R, Qi Y et al. HLA-C cell surface expression and control of HIV/AIDS correlate with a variant upstream of HLA-C. Nat Genet 2009; 41:1290-4.

HLA-DPB1 (major histocompatibility complex, class II, DP beta 1)

Cruz TD, Valdes AM, Santiago A et al. DPB1 alleles are associated with type 1 diabetes susceptibility in multiple ethnic groups. Diabetes 2004; 53:2158-63.

Kamatani Y, Wattanapokayakit S, Ochi H et al. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat Genet 2009; 41:591-5.

Kim SH, Hur GY, Choi JH, Park HS. Pharmacogenetics of aspirin-intolerant asthma. Pharmacogenomics 2008; 9:85-91.

Kim SH, Park HS. Genetic markers for differentiating aspirin-hypersensitivity. Yonsei Med J 2006; 47:15-21.

Kominami S, Tanabe N, Ota M et al. HLA-DPB1 and NFKBIL1 may confer the susceptibility to chronic thromboembolic pulmonary hypertension in the absence of deep vein thrombosis. J Hum Genet 2009; 54:108-14.

Maier LA, McGrath DS, Sato H et al. Influence of MHC class II in susceptibility to beryllium sensitization and chronic beryllium disease. J Immunol 2003; 171:6910-8.

Matsushita T, Matsuoka T, Isobe N et al. Association of the HLA-DPB1*0501 allele with anti-aquaporin-4 antibody positivity in Japanese patients with idiopathic central nervous system demyelinating disorders. Tissue Antigens 2009; 73:171-6.

McCanlies EC, Ensey JS, Schuler CR, Kreiss K, Weston A. The association between HLA-DPB1Glu69 and chronic beryllium disease and beryllium sensitization. Am J Ind Med 2004; 46:95-103.

McCanlies EC, Kreiss K, Andrew M, Weston A. HLA-DPB1 and chronic beryllium disease: a HuGE review. Am J Epidemiol 2003; 157:388-98.

McCleskey TM, Buchner V, Field RW, Scott BL. Recent advances in understanding the biomolecular basis of chronic beryllium disease: a review. Rev Environ Health 2009; 24:75-115.

Orozco G, Barton A, Eyre S et al. HLA-DPB1-COL11A2 and three additional xMHC loci are independently associated with RA in a UK cohort. Genes Immun 2011; 12:169-75.

Ovsyannikova IG, Jacobson RM, Dhiman N, Vierkant RA, Pankratz VS, Poland GA. Human leukocyte antigen and cytokine receptor gene polymorphisms associated with heterogeneous immune responses to mumps viral vaccine. Pediatrics 2008; 121:1091-9.

Ovsyannikova IG, Jacobson RM, Ryan JE, Dhiman N, Vierkant RA, Poland GA. Relationship between HLA polymorphisms and gamma interferon and interleukin-10 cytokine production in healthy individuals after rubella vaccination. Clin Vaccine Immunol 2007; 14:115-22.

Ovsyannikova IG, Jacobson RM, Vierkant RA, Jacobsen SJ, Pankratz VS, Poland GA. Human leukocyte antigen class II alleles and rubella-specific humoral and cell-mediated immunity following measles-mumps-rubella-II vaccination. J Infect Dis 2005; 191:515-9.

Ovsyannikova IG, Jacobson RM, Vierkant RA, Shane Pankratz V, Jacobsen SJ, Poland GA. Associations between human leukocyte antigen (HLA) alleles and very high levels of measles antibody following vaccination. Vaccine 2004; 22:1914-20.

Ovsyannikova IG, Pankratz VS, Vierkant RA, Jacobson RM, Poland GA. Human leukocyte antigen haplotypes in the genetic control of immune response to measles-mumps-rubella vaccine. J Infect Dis 2006; 193:655-63.

Ovsyannikova IG, Vierkant RA, Pankratz VS, Jacobson RM, Poland GA. Extended LTA, TNF, LST1 and HLA gene haplotypes and their association with rubella vaccine-induced immunity. PLoS One 2010. doi:10. 1371/journal. pone. 0011806.

Poland GA, Ovsyannikova IG, Jacobson RM. Application of pharmacogenomics to vaccines. Pharmacogenomics 2009; 10:837-52.

Richeldi L, Sorrentino R, Saltini C. HLA-DPB1 glutamate 69: a genetic marker of beryllium disease. Science 1993; 262:242-4.

Tarantino-Hutchison LM, Sorrentino C, Nadas A et al. Genetic determinants of sensitivity to beryllium in mice. J Immunotoxicol 2009; 6:130-5.

Taylor GM, Dearden S, Ravetto P et al. Genetic susceptibility to childhood common acute lymphoblastic leukaemia is associated with polymorphic peptide-binding pocket profiles in HLA-DPB1*0201. Hum Mol Genet 2002; 11:1585-97.

Taylor GM, Hussain A, Lightfoot TJ, Birch JM, Eden TO, Greaves MF. HLA-associated susceptibility to childhood B-cell precursor ALL: definition and role of HLA-DPB1 supertypes. Br J Cancer 2008; 98:1125-31.

Taylor GM, Hussain A, Verhage V et al. Strong association of the HLA-DP6 supertype with childhood leukaemia is due to a single allele, DPB1*0601. Leukemia 2009; 23:863-9.

Taylor M, Hussain A, Urayama K et al. The human major histocompatibility complex and childhood leukemia: an etiological hypothesis based on molecular mimicry. Blood Cells Mol Dis 2009; 42:129-35.

Wu Y, Liu B, Lin W et al. HPV16 E6 variants and HLA class II polymorphism among Chinese women with cervical cancer. J Med Virol 2007; 79:439-46.

Zhou X, Lee JE, Arnett FC et al. HLA-DPB1 and DPB2 are genetic loci for systemic sclerosis: a genome-wide association study in Koreans with replication in North Americans. Arthritis Rheum 2009; 60:3807-14.

HLA-DQA1 (major histocompatibility complex, class II, DQ alpha 1)

Babron MC, Nilsson S, Adamovic S et al. Meta and pooled analysis of European coeliac disease data. Eur J Hum Genet 2003; 11:828-34.

Britten AC, Mijovic CH, Barnett AH, Kelly MA. Differential expression of HLA-DQ alleles in peripheral blood mononuclear cells: alleles associated with susceptibility to and protection from autoimmune type 1 diabetes. Int J Immunogenet 2009; 36:47-57.

de Kauwe AL, Chen Z, Anderson RP et al. Resistance to celiac disease in humanized HLA-DR3-DQ2-transgenic mice expressing specific anti-gliadin CD4+ T cells. J Immunol 2009; 182:7440-50.

Donner H, Rau H, Braun J, Herwig J, Usadel KH, Badenhoop K. Highly polymorphic promoter regions of HLA DQA1 and DQB1 genes do not help to further define disease susceptibility in insulin-dependent diabetes mellitus. Tissue Antigens 1997; 50:642-5.

Erlich H, Valdes AM, Noble J et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes 2008; 57:1084-92.

Gelder CM, Lambkin R, Hart KW et al. Associations between human leukocyte antigens and nonresponsiveness to influenza vaccine. J Infect Dis 2002; 185:114-7.

Haas JP, Metzler M, Frank C, Haefner R, Wassmuth R. HLA-DQA1 gene expression profiling in oligoarticular JIA. Autoimmunity 2009; 42:389-91.

Habegger de Sorrentino A, López R, Motta P et al. HLA class II involvement in HIV-associated Toxoplasmic encephalitis development. Clin Immunol 2005; 115:133-7.

Hardie RA, Luo M, Bruneau B et al. Human leukocyte antigen-DQ alleles and haplotypes and their associations with resistance and susceptibility to HIV-1 infection. AIDS 2008; 22:807-16.

Howell WM, Calder PC, Grimble RF. Gene polymorphisms, inflammatory diseases and cancer. Proc Nutr Soc 2002; 61:447-56.

Kim CY, Quarsten H, Bergseng E, Khosla C, Sollid LM. Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc Natl Acad Sci USA 2004; 101:4175-9.

Kindmark A, Jawaid A, Harbron CG et al. Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J 2008; 8:186-95.

Kohno T, Kunitoh H, Shimada Y et al. Individuals susceptible to lung adenocarcinoma defined by combined HLA-DQA1 and TERT genotypes. Carcinogenesis 2010; 31:834-41.

Laivoranta-Nyman S, Möttönen T, Hermann R et al. HLA-DR-DQ haplotypes and genotypes in Finnish patients with rheumatoid arthritis. Ann Rheum Dis 2004; 63:1406-12.

Meyer CG, Gallin M, Erttmann KD et al. HLA-D alleles associated with generalized disease, localized disease, and putative immunity in Onchocerca volvulus infection. Proc Natl Acad Sci USA 1994; 91:7515-9.

Moustakas AK, van de Wal Y, Routsias J et al. Structure of celiac disease-associated HLA-DQ8 and non-associated HLA-DQ9 alleles in complex with two disease-specific epitopes. Int Immunol 2000; 12:1157-66.

Murdoch ME, Payton A, Abiose A et al. HLA-DQ alleles associate with cutaneous features of onchocerciasis. The Kaduna-London-Manchester Collaboration for Research on Onchocerciasis. Hum Immunol 1997; 55:46-52.

Ovsyannikova IG, Jacobson RM, Dhiman N, Vierkant RA, Pankratz VS, Poland GA. Human leukocyte antigen and cytokine receptor gene polymorphisms associated with heterogeneous immune responses to mumps viral vaccine. Pediatrics 2008; 121:1091-9.

Ovsyannikova IG, Jacobson RM, Vierkant RA, Jacobsen SJ, Pankratz VS, Poland GA. Human leukocyte antigen class II alleles and rubella-specific humoral and cell-mediated immunity following measles-mumps-rubella-II vaccination. J Infect Dis 2005; 191:515-9.

Ovsyannikova IG, Jacobson RM, Vierkant RA, Shane Pankratz V, Jacobsen SJ, Poland GA. Associations between human leukocyte antigen (HLA) alleles and very high levels of measles antibody following vaccination. Vaccine 2004; 22:1914-20.

Ovsyannikova IG, Vierkant RA, Pankratz VS, Jacobson RM, Poland GA. Extended LTA, TNF, LST1 and HLA gene haplotypes and their association with rubella vaccine-induced immunity. PLoS One 2010. doi:10. 1371/journal. pone. 0011806.

Poland GA, Ovsyannikova IG, Jacobson RM. Application of pharmacogenomics to vaccines. Pharmacogenomics 2009; 10:837-52.

Suzuki Y, Wong SY, Grumet FC et al. Evidence for genetic regulation of susceptibility to toxoplasmic encephalitis in AIDS patients. J Infect Dis 1996; 173:265-8.

Tanaka S, Kobayashi T, Nakanishi K et al. Association of HLA-DQ genotype in autoantibody-negative and rapid-onset type 1 diabetes. Diabetes Care 2002; 25:2302-7.

Tollefsen S, Arentz-Hansen H, Fleckenstein B et al. HLA-DQ2 and -DQ8 signatures of gluten T cell epitopes in celiac disease. J Clin Invest 2006; 116:2226-36.

Vader W, Stepniak D, Kooy Y et al. The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc Natl Acad Sci USA 2003; 100:12390-5.

Yasunaga S, Kimura A, Hamaguchi K, Ronningen KS, Sasazuki T. Different contribution of HLA-DR and -DQ genes in susceptibility and resistance to insulin-dependent diabetes mellitus (IDDM). Tissue Antigens 1996; 47:37-48.

Yen JH, Chen CJ, Tsai WC et al. HLA-DQA1 genotyping in patients with rheumatoid arthritis in Taiwan. Kaohsiung J Med Sci 2001; 17:183-9.

HLA-DRB1 (major histocompatibility complex, class II, DR beta 1)

Alfirevic A, Vilar FJ, Alsbou M et al. TNF, LTA, HSPA1L and HLA-DR gene polymorphisms in HIV-positive patients with hypersensitivity to cotrimoxazole. Pharmacogenomics 2009; 10:531-40.

Bridges SL Jr, Kelley JM, Hughes LB. The HLA-DRB1 shared epitope in Caucasians with rheumatoid arthritis: a lesson learned from tic-tac-toe. Arthritis Rheum 2008; 58:1211-5.

Cooke GS, Hill AV. Genetics of susceptibility to human infectious disease. Nat Rev Genet 2001; 2:967-77.

Criswell LA, Lum RF, Turner KN et al. The influence of genetic variation in the HLA-DRB1 and LTA-TNF regions on the response to treatment of early rheumatoid arthritis with methotrexate or etanercept. Arthritis Rheum 2004; 50:2750-6.

Erlich H, Valdes AM, Noble J et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes 2008; 57:1084-92.

Fernando MM, Stevens CR, Sabeti PC, et al. Identification of two independent risk factors for lupus within the MHC in United Kingdom families. PLoS Genet 2007. doi:10. 1371/journal. pgen. 0030192.

Gelder CM, Lambkin R, Hart KW et al. Associations between human leukocyte antigens and nonresponsiveness to influenza vaccine. J Infect Dis 2002; 185:114-7.

Gonzalez-Gay MA, Garcia-Porrua C, Hajeer AH. Influence of human leukocyte antigen-DRB1 on the susceptibility and severity of rheumatoid arthritis. Semin Arthritis Rheum 2002; 31:355-60.

Goverdhan SV, Howell MW, Mullins RF et al. Association of HLA class I and class II polymorphisms with age-related macular degeneration. Invest Ophthalmol Vis Sci 2005; 46:1726-34.

Grossman I, Avidan N, Singer C et al. Pharmacogenetics of glatiramer acetate therapy for multiple sclerosis reveals drug-response markers. Pharmacogenet Genomics 2007; 17:657-66.

Hermann R, Turpeinen H, Laine AP et al. HLA DR-DQ-encoded genetic determinants of childhood-onset type 1 diabetes in Finland: an analysis of 622 nuclear families. Tissue Antigens 2003; 62:162-9.

Hirata K, Takagi H, Yamamoto M et al. Ticlopidine-induced hepatotoxicity is associated with specific human leukocyte antigen genomic subtypes in Japanese patients: a preliminary case-control study. Pharmacogenomics J 2008; 8:29-33.

Hiroi S, Harada H, Nishi H, Satoh M, Nagai R, Kimura A. Polymorphisms in the SOD2 and HLA-DRB1 genes are associated with nonfamilial idiopathic dilated cardiomyopathy in Japanese. Biochem Biophys Res Commun 1999; 261:332-9.

Hoffmann S, Cepok S, Grummel V et al. HLA-DRB1*0401 and HLA-DRB1*0408 are strongly associated with the development of antibodies against interferon-beta therapy in multiple sclerosis. Am J Hum Genet 2008; 83:219-27.

Huang YW, Hu CY, Chen CL et al. Human leukocyte antigen-DRB1*1101 correlates with less severe hepatitis in Taiwanese male carriers of hepatitis B virus. J Med Virol 2009; 81:588-93.

Jiang YG, Wang YM, Liu TH, Liu J. Association between HLA class II gene and susceptibility or resistance to chronic hepatitis B. World J Gastroenterol 2003; 9:2221-5.

Kindmark A, Jawaid A, Harbron CG et al. Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J 2008; 8:186-95.

Kochi Y, Suzuki A, Yamada R, Yamamoto K. Genetics of rheumatoid arthritis: underlying evidence of ethnic differences. J Autoimmun 2009; 32:158-62.

Lin ZH, Xin YN, Dong QJ et al. Association between HLA-DRB1 alleles polymorphism and hepatocellular carcinoma: a meta-analysis. BMC Gastroenterol 2010; 10:145.

Lincoln MR, Ramagopalan SV, Chao MJ et al. Epistasis among HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci determines multiple sclerosis susceptibility. Proc Natl Acad Sci USA 2009; 106:7542-7.

MacDonald KS, Fowke KR, Kimani J et al. Influence of HLA supertypes on susceptibility and resistance to human immunodeficiency virus type 1 infection. J Infect Dis 2000; 181:1581-9.

Martin AM, Nolan D, James I et al. Predisposition to nevirapine hypersensitivity associated with HLA-DRB1*0101 and abrogated by low CD4 T-cell counts. AIDS 2005; 19:97-9.

Miyachi K, Miyakawa H, Oda M, Horigome T, Fritzler MJ. Primary biliary cirrhosis and autoantibodies. Nihon Rinsho Meneki Gakkai Kaishi 2008; 31:47-55.

Nakamura M, Yasunami M, Kondo H et al. Analysis of HLA-DRB1 polymorphisms in Japanese patients with primary biliary cirrhosis (PBC): The HLA-DRB1polymorphism determines the relative risk of antinuclear antibodies for disease progression in PBC. Hepatol Res 2010; 40:494-504.

Oksenberg JR, Barcellos LF, Cree BA et al. Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. Am J Hum Genet 2004; 74:160-7.

Ovsyannikova IG, Jacobson RM, Dhiman N, Vierkant RA, Pankratz VS, Poland GA. Human leukocyte antigen and cytokine receptor gene polymorphisms associated with heterogeneous immune responses to mumps viral vaccine. Pediatrics 2008; 121:1091-9.

Ovsyannikova IG, Jacobson RM, Ryan JE, Dhiman N, Vierkant RA, Poland GA. Relationship between HLA polymorphisms and gamma interferon and interleukin-10 cytokine production in healthy individuals after rubella vaccination. Clin Vaccine Immunol 2007; 14:115-22.

Ovsyannikova IG, Jacobson RM, Vierkant RA, Jacobsen SJ, Pankratz VS, Poland GA. Human leukocyte antigen class II alleles and rubella-specific humoral and cell-mediated immunity following measles-mumps-rubella-II vaccination. J Infect Dis 2005; 191:515-9.

Ovsyannikova IG, Jacobson RM, Vierkant RA, Shane Pankratz V, Jacobsen SJ, Poland GA. Associations between human leukocyte antigen (HLA) alleles and very high levels of measles antibody following vaccination. Vaccine 2004; 22:1914-20.

Ovsyannikova IG, Pankratz VS, Vierkant RA, Jacobson RM, Poland GA. Human leukocyte antigen haplotypes in the genetic control of immune response to measles-mumps-rubella vaccine. J Infect Dis 2006; 193:655-63.

Ovsyannikova IG, Vierkant RA, Pankratz VS, Jacobson RM, Poland GA. Extended LTA, TNF, LST1 and HLA gene haplotypes and their association with rubella vaccine-induced immunity. PLoS One 2010. doi:10. 1371/journal. pone. 0011806.

Petersdorf EW, Longton GM, Anasetti C et al. Definition of HLA-DQ as a transplantation antigen. Proc Natl Acad Sci USA 1996; 93:15358-63.

Poland GA, Ovsyannikova IG, Jacobson RM. Application of pharmacogenomics to vaccines. Pharmacogenomics 2009; 10:837-52.

Pozo ND, Medrano LM, Cénit MC et al. MSH5 is not a genetic predisposing factor for immunoglobulin A deficiency but marks the HLA-DRB1*0102 subgroup carrying susceptibility. Hum Immunol 2010; 71:861-4.

Ramagopalan SV, Ebers GC. Multiple sclerosis: major histocompatibility complexity and antigen presentation. Genome Med 2009; 1:105.

Ramagopalan SV, Knight JC, Ebers GC. Multiple sclerosis and the major histocompatibility complex. Curr Opin Neurol 2009; 22:219-25.

Rossman MD, Thompson B, Frederick M et al. HLA-DRB1*1101: a significant risk factor for sarcoidosis in blacks and whites. Am J Hum Genet 2003; 73:720-35.

Singh R, Kaul R, Kaul A, Khan K. A comparative review of HLA associations with hepatitis B and C viral infections across global populations. World J Gastroenterol 2007; 13:1770-87.

Stayoussef M, Benmansour J, Al-Irhayim AQ et al. Autoimmune type 1 diabetes genetic susceptibility encoded by human leukocyte antigen DRB1 and DQB1 genes in Tunisia. Clin Vaccine Immunol 2009; 16:1146-50.

Stayoussef M, Benmansour J, Al-Jenaidi FA et al. Influence of common and specific HLA-DRB1/DQB1 haplotypes on genetic susceptibilities of three distinct Arab populations to type 1 diabetes. Clin Vaccine Immunol 2009; 16:136-8.

Sun Y, Zhu F, Wang M, Ma S, Liao Y. Association analysis about HLA-DRB1, -DQB1 polymorphism and auto-antibodies against α(1)-adrenergic receptors in Chinese patients with essential hypertension. Clin Exp Hypertens 2010; 32:532-9.

Thursz M, Yallop R, Goldin R, Trepo C, Thomas HC. Influence of MHC class II genotype on outcome of infection with hepatitis C virus. The HENCORE group. Hepatitis C European Network for Cooperative Research. Lancet 1999; 354:2119-24.

Vitezica ZG, Milpied B, Lonjou C et al. HLA-DRB1*01 associated with cutaneous hypersensitivity induced by nevirapine and efavirenz. AIDS 2008; 22:540-1.

Yang L, Wang LJ, Shi GL et al. Analysis of HLA-A, HLA-B and HLA-DRB1 alleles in Chinese patients with lung cancer. Genet Mol Res 2010; 9:750-5.

Yoshizawa K, Umemura T, Ota M. Genetic background of autoimmune hepatitis in Japan. J Gastroenterol 2011; 46 Suppl 1:42-7.

HMGCR (3-hydroxy-3-methylglutaryl-Coenzyme A reductase)

Aulchenko YS, Ripatti S, Lindqvist I et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet 2009; 41:47-55.

Bjelajac A, Goo AK, Weart CW. Prevention and regression of atherosclerosis: effects of HMG-CoA reductase inhibitors. Ann Pharmacother 1996; 30:1304-15.

Brugts JJ, Yetgin T, Hoeks SE et al. The benefits of statins in people without established cardiovascular disease but with cardiovascular risk factors: meta-analysis of randomised controlled trials. BMJ 2009; 338:2376.

Chasman DI, Posada D, Subrahmanyan L, Cook NR, Stanton VP Jr, Ridker PM. Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA 2004; 291:2821-7.

Donnelly LA, Doney AS, Dannfald J et al. A paucimorphic variant in the HMG-CoA reductase gene is associated with lipid-lowering response to statin treatment in diabetes: a GoDARTS study. Pharmacogenet Genomics 2008; 18:1021-6.

Freitas RN, Khaw KT, Wu K et al. HMGCR gene polymorphism is associated with stroke risk in the EPIC-Norfolk study. Eur J Cardiovasc Prev Rehabil 2010; 17:89-93.

Hindorff LA, Lemaitre RN, Smith NL et al. Common genetic variation in six lipid-related and statin-related genes, statin use and risk of incident nonfatal myocardial infarction and stroke. Pharmacogenet Genomics 2008; 18:677-82.

Hsu I, Spinler SA, Johnson NE. Comparative evaluation of the safety and efficacy of HMG-CoA reductase inhibitor monotherapy in the treatment of primary hypercholesterolemia. Ann Pharmacother 1995; 29:743-59.

Kathiresan S, Melander O, Anevski D et al. Polymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med 2008; 358:1240-9.

Krauss RM, Mangravite LM, Smith JD et al. Variation in the 3-hydroxyl-3-methylglutaryl coenzyme a reductase gene is a ssociated with racial differences in low-density lipoprotein cholesterol response to simvastatin treatment. Circulation 2008; 117:1537-44.

Lennernäs H, Fager G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors. Similarities and differences. Clin Pharmacokinet 1997; 32:403-25.

Medina MW, Gao F, Ruan W, Rotter JI, Krauss RM. Alternative splicing of 3-hydroxy-3-methylglutaryl coenzyme A reductase is associated with plasma low-density lipoprotein cholesterol response to simvastatin. Circulation 2008; 118:355-62.

Omar MA, Wilson JP, Cox TS. Rhabdomyolysis and HMG-CoA reductase inhibitors. Ann Pharmacother 2001; 35:1096-107.

Poduri A, Khullar M, Bahl A, Sehrawat BS, Sharma Y, Talwar KK. Common variants of HMGCR, CETP, APOAI, ABCB1, CYP3A4, and CYP7A1 genes as predictors of lipid-lowering response to atorvastatin therapy. DNA Cell Biol 2010; 29:629-37.

Porcellini E, Calabrese E, Guerini F et al. The hydroxy-methyl-glutaryl CoA reductase promoter polymorphism is associated with Alzheimer’s risk and cognitive deterioration. Neurosci Lett 2007; 416:66-70.

Prinz V, Endres M. The acute (cerebro)vascular effects of statins. Anesth Analg 2009; 109:572-84.

Rodríguez-Rodríguez E, Mateo I, Infante J et al. Interaction between HMGCR and ABCA1 cholesterol-related genes modulates Alzheimer’s disease risk. Brain Res 2009; 1280:166-71.

Schreiber DH, Anderson TR. Statin-induced rhabdomyolysis. J Emerg Med 2006; 31:177-80.

Singer JB, Holdaas H, Jardine AG et al. Genetic analysis of fluvastatin response and dyslipidemia in renal transplant recipients. J Lipid Res 2007; 48:2072-8.

van Doren M, Broihier HT, Moore LA, Lehmann R. HMG-CoA reductase guides migrating primordial germ cells. Nature 1998; 396:466-9.

Wang CY, Zhong WB, Chang TC, Lai SM, Tsai YF. Lovastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, induces apoptosis and differentiation in human anaplastic thyroid carcinoma cells. J Clin Endocrinol Metab 2003; 88:3021-6.

HNF4A (hepatocyte nuclear factor 4, alpha)

Aguilar-Salinas CA, Reyes-Rodríguez E, Ordóñez-Sánchez ML, Torres MA et al. Early-onset type 2 diabetes: metabolic and genetic characterization in the mexican population. J Clin Endocrinol Metab 2001; 86:220-6.

Andrulionyte L, Laukkanen O, Chiasson JL, Laakso M; STOP-NIDDM Study Group. Single nucleotide polymorphisms of the HNF4alpha gene are associated with the conversion to type 2 diabetes mellitus: the STOP-NIDDM trial. J Mol Med 2006; 84:701-8.

Barrio R, Bellanné-Chantelot C, Moreno JC et al. Nine novel mutations in maturity-onset diabetes of the young (MODY) candidate genes in 22 Spanish families. J Clin Endocrinol Metab 2002; 87:2532-9.

Barroso I, Luan J, Wheeler E et al. Population-specific risk of type 2 diabetes conferred by HNF4A P2 promoter variants: a lesson for replication studies. Diabetes 2008; 57:3161-5.

Darsigny M, Babeu JP, Dupuis AA et al. Loss of hepatocyte-nuclear-factor-4alpha affects colonic ion transport and causes chronic inflammation resembling inflammatory bowel disease in mice. PLoS One 2009. doi:10. 1371/journal. pone. 0007609.

Ellard S, Bellanné-Chantelot C, Hattersley AT; European Molecular Genetics Quality Network (EMQN) MODY group. Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia 2008; 51:546-53.

Ellard S, Colclough K. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha (HNF1A) and 4 alpha (HNF4A) in maturity-onset diabetes of the young. Hum Mutat 2006; 27:854-69.

Fajans SS, Bell GI, Polonsky KS. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med 2001; 345:971-80.

Fajans SS, Brown MB. Administration of sulfonylureas can increase glucose-induced insulin secretion for decades in patients with maturity-onset diabetes of the young. Diabetes Care 1993; 16:1254-61.

Flanagan SE, Kapoor RR, Mali G et al. Diazoxide-responsive hyperinsulinemic hypoglycemia caused by HNF4A gene mutations. Eur J Endocrinol 2010; 162:987-92.

Hani EH, Suaud L, Boutin P et al. A missense mutation in hepatocyte nuclear factor-4 alpha, resulting in a reduced transactivation activity, in human late-onset non-insulin-dependent diabetes mellitus. J Clin Invest 1998; 101:521-6.

Hansen SK, Rose CS, Glümer C et al. Variation near the hepatocyte nuclear factor (HNF)-4alpha gene associates with type 2 diabetes in the Danish population. Diabetologia 2005; 48:452-8.

Hayhurst GP, Strick-Marchand H, Mulet C et al. Morphogenetic competence of HNF4 alpha-deficient mouse hepatic cells. J Hepatol 2008; 49:384-95.

Hor SY, Lee SC, Wong CI et al. PXR, CAR and HNF4alpha genotypes and their association with pharmacokinetics and pharmacodynamics of docetaxel and doxorubicin in Asian patients. Pharmacogenomics J 2008; 8:139-46.

Johansen A, Ek J, Mortensen HB, Pedersen O, Hansen T. Half of clinically defined maturity-onset diabetes of the young patients in Denmark do not have mutations in HNF4A, GCK, and TCF1. J Clin Endocrinol Metab 2005; 90:4607-14.

Johansson S, Raeder H, Eide SA et al. Studies in 3,523 Norwegians and meta-analysis in 11,571 subjects indicate that variants in the hepatocyte nuclear factor 4 alpha (HNF4A) P2 region are associated with type 2 diabetes in Scandinavians. Diabetes 2007; 56:3112-7.

Jover R, Moya M, Gómez-Lechón MJ. Transcriptional regulation of cytochrome p450 genes by the nuclear receptor hepatocyte nuclear factor 4-alpha. Curr Drug Metab 2009; 10:508-19

Kathiresan S, Willer CJ, Peloso GM et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 2009; 41:56-65.

Lausen J, Thomas H, Lemm I et al. Naturally occurring mutations in the human HNF4alpha gene impair the function of the transcription factor to a varying degree. Nucleic Acids Res 2000; 28:430-7.

Love-Gregory L, Permutt MA. HNF4A genetic variants: role in diabetes. Curr Opin Clin Nutr Metab Care 2007; 10:397-402.

Love-Gregory LD, Wasson J, Ma J et al. A common polymorphism in the upstream promoter region of the hepatocyte nuclear factor-4 alpha gene on chromosome 20q is associated with type 2 diabetes and appears to contribute to the evidence for linkage in an ashkenazi jewish population. Diabetes 2004; 53:1134-40.

Muller YL, Infante AM, Hanson RL et al. Variants in hepatocyte nuclear factor 4alpha are modestly associated with type 2 diabetes in Pima Indians. Diabetes 2005; 54:3035-9.

Murphy R, Ellard S, Hattersley AT. Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nat Clin Pract Endocrinol Metab 2008; 4:200-13.

Nyunt O, Wu JY, McGown IN et al. Investigating maturity onset diabetes of the young. Clin Biochem Rev 2009; 30:67-74.

Pearson ER, Boj SF, Steele AM et al. Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene. PLoS Med 2007. doi:10. 1371/journal. pmed. 0040118.

Pearson ER, Pruhova S, Tack CJ et al. Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4alpha mutations in a large European collection. Diabetologia 2005; 48:878-85.

Shaat N, Karlsson E, Lernmark A et al. Common variants in MODY genes increase the risk of gestational diabetes mellitus. Diabetologia 2006; 49:1545-51.

Sookoian S, Gemma C, Pirola CJ. Influence of hepatocyte nuclear factor 4alpha (HNF4alpha) gene variants on the risk of type 2 diabetes: a meta-analysis in 49,577 individuals. Mol Genet Metab 2010; 99:80-9.

Stoffel M, Duncan SA. The maturity-onset diabetes of the young (MODY1) transcription factor HNF4alpha regulates expression of genes required for glucose transport and metabolism. Proc Natl Acad Sci USA 1997; 94:13209-14.

Stride A, Hattersley AT. Different genes, different diabetes: lessons from maturity-onset diabetes of the young. Ann Med 2002; 34:207-16.

Tattersall RB. Mild familial diabetes with dominant inheritance. Q J Med 1974; 43:339-57.

Tattersall RB, Fajans SS. A difference between the inheritance of classical juvenile-onset and maturity-onset type diabetes of young people. Diabetes 1975; 24:44-53.

Tham LS, Holford NH, Hor SY et al. Lack of association of single-nucleotide polymorphisms in pregnane X receptor, hepatic nuclear factor 4alpha, and constitutive androstane receptor with docetaxel pharmacokinetics. Clin Cancer Res 2007; 13:7126-32.

Tirona RG, Lee W, Leake BF et al. The orphan nuclear receptor HNF4alpha determines PXR- and CAR-mediated xenobiotic induction of CYP3A4. Nat Med 2003; 9:220-4.

UK IBD Genetics Consortium et al. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat Genet 2009; 41:1330-4.

Vaxillaire M, Dina C, Lobbens S et al. Effect of common polymorphisms in the HNF4alpha promoter on susceptibility to type 2 diabetes in the French Caucasian population. Diabetologia 2005; 48:440-4.

Vaxillaire M, Froguel P. Monogenic diabetes in the young, pharmacogenetics and relevance to multifactorial forms of type 2 diabetes. Endocr Rev 2008; 29:254-64.

Weissglas-Volkov D, Huertas-Vazquez A, Suviolahti E et al. Common hepatic nuclear factor-4alpha variants are associated with high serum lipid levels and the metabolic syndrome. Diabetes 2006; 55:1970-7.

Yamagata K, Furuta H, Oda N et al. Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature 1996; 384:458-60.

Zouali H, Hani EH, Philippi A et al. A susceptibility locus for early-onset non-insulin dependent (type 2) diabetes mellitus maps to chromosome 20q, proximal to the phosphoenolpyruvate carboxykinase gene. Hum Mol Genet 1997; 6:1401-8.

HOXB13 (homeobox B13)

Goetz MP, Suman VJ, Couch FJ et al. Cytochrome P450 2D6 and homeobox 13/interleukin-17B receptor: combining inherited and tumor gene markers for prediction of tamoxifen resistance. Clin Cancer Res 2008; 14:5864-8.

Jansen MP, Sieuwerts AM, Look MP et al. HOXB13-to-IL17BR expression ratio is related with tumor aggressiveness and response to tamoxifen of recurrent breast cancer: a retrospective study. J Clin Oncol 2007; 25:662-8.

Jerevall PL, Brommesson S, Strand C et al. Exploring the two-gene ratio in breast cancer-independent roles for HOXB13 and IL17BR in prediction of clinical outcome. Breast Cancer Res Treat 2008; 107:225-34.

Jung C, Kim RS, Lee SJ, Wang C, Jeng MH. HOXB13 homeodomain protein suppresses the growth of prostate cancer cells by the negative regulation of T-cell factor 4. Cancer Res 2004; 64:3046-51.

Jung C, Kim RS, Zhang HJ, Lee SJ, Jeng MH. HOXB13 induces growth suppression of prostate cancer cells as a repressor of hormone-activated androgen receptor signaling. Cancer Res 2004; 64:9185-92.

Ma XJ, Hilsenbeck SG, Wang W et al. The HOXB13:IL17BR expression index is a prognostic factor in early-stage breast cancer. J Clin Oncol 2006; 24:4611-9.

Ma XJ, Wang Z, Ryan PD et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 2004; 5:607-16.

Miao J, Wang Z, Provencher H et al. HOXB13 promotes ovarian cancer progression. Proc Natl Acad Sci USA 2007; 104:17093-8.

Rodriguez BA, Cheng AS, Yan PS et al. Epigenetic repression of the estrogen-regulated Homeobox B13 gene in breast cancer. Carcinogenesis 2008; 29:1459-65.

Sgroi DC, Haber DA, Ryan PD, Ma XJ, Erlander MG. RE: A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 2004; 6:445.

HP (haptoglobin)

Asleh R, Levy AP. In vivo and in vitro studies establishing haptoglobin as a major susceptibility gene for diabetic vascular disease. Vasc Health Risk Manag 2005; 1:19-28.

Atkinson SH, Mwangi TW, Uyoga SM et al. The haptoglobin 2-2 genotype is associated with a reduced incidence of Plasmodium falciparum malaria in children on the coast of Kenya. Clin Infect Dis 2007; 44:802-9.

Atkinson SH, Rockett K, Sirugo G et al. Seasonal childhood anaemia in West Africa is associated with the haptoglobin 2-2 genotype. PLoS Med 2006. doi:10. 1371/journal. pmed. 0030172.

Blum S, Milman U, Shapira C et al. Dual therapy with statins and antioxidants is superior to statins alone in decreasing the risk of cardiovascular disease in a subgroup of middle-aged individuals with both diabetes mellitus and the haptoglobin 2-2 genotype. Arterioscler Thromb Vasc Biol 2008; 28:18-20.

Costacou T, Ferrell RE, Orchard TJ. Haptoglobin genotype: a determinant of cardiovascular complication risk in type 1 diabetes. Diabetes 2008; 57:1702-6.

Cox SE, Doherty C, Atkinson SH et al. Haplotype association between haptoglobin (Hp2) and Hp promoter SNP (A-61C) may explain previous controversy of haptoglobin and malaria protection. PLoS One 2007. doi:10. 1371/journal. pone. 0000362.

Delanghe JR, Langlois MR, de Buyzere ML, Torck MA. Vitamin C deficiency and scurvy are not only a dietary problem but are codetermined by the haptoglobin polymorphism. Clin Chem 2007; 53:1397-400.

Grant DJ, Maeda N. A base substitution in the promoter associated with the human haptoglobin 2-1 modified phenotype decreases transcriptional activity and responsiveness to interleukin-6 in human hepatoma cells. Am J Hum Genet 1993; 52:974-80.

Koda Y, Soejima M, Yoshioka N, Kimura H. The haptoglobin-gene deletion responsible for anhaptoglobinemia. Am J Hum Genet 1998; 62:245-52.

Levy AP, Blum S. Pharmacogenomics in prevention of diabetic cardiovascular disease: utilization of the haptoglobin genotype in determining benefit from vitamin E. Expert Rev Cardiovasc Ther 2007; 5:1105-11.

Milman U, Blum S, Shapira C et al. Vitamin E supplementation reduces cardiovascular events in a subgroup of middle-aged individuals with both type 2 diabetes mellitus and the haptoglobin 2-2 genotype: a prospective double-blinded clinical trial. Arterioscler Thromb Vasc Biol 2008; 28:341-7.

Nakhoul FM, Miller-Lotan R, Awaad H, Asleh R, Levy AP. Hypothesis-haptoglobin genotype and diabetic nephropathy. Nat Clin Pract Nephrol 2007; 3:339-44.

Quaye IK, Ekuban FA, Goka BQ et al. Haptoglobin 1-1 is associated with susceptibility to severe Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg 2000; 94:216-9.

Teye K, Quaye IK, Koda Y et al. A-61C and C-101G Hp gene promoter polymorphisms are, respectively, associated with ahaptoglobinaemia and hypohaptoglobinaemia in Ghana. Clin Genet 2003; 64:439-43.

Wiernicki I, Safranow K, Baranowska-Bosiacka I, Piatek J, Gutowski P. Haptoglobin 2-1 phenotype predicts rapid growth of abdominal aortic aneurysms. J Vasc Surg 2010; 52:691-6.

HRH1 (histamine receptor H1)

Dere E, Zlomuzica A, Viggiano D et al. Episodic-like and procedural memory impairments in histamine H1 Receptor knockout mice coincide with changes in acetylcholine esterase activity in the hippocampus and dopamine turnover in the cerebellum. Neuroscience 2008; 157:532-41.

García-Martín E, Ayuso P, Martínez C, Blanca M, Agúndez JA. Histamine pharmacogenomics. Pharmacogenomics 2009; 10:867-83.

Gongadze N, Kezeli T, Antelava N. Prolong QT interval and “torsades de pointes” associated with different group of drugs. Georgian Med News 2007; 12:45-9.

Hirai T, Okuma C, Harada C et al. Development of amygdaloid kindling in histidine decarboxylase-deficient and histamine H1 receptor-deficient mice. Epilepsia 2004; 45:309-13.

Kayasuga R, Sugimoto Y, Watanabe T, Kamei C. Histamine H1 receptors are involved in mouse nasal allergic responses: a demonstration with H1 receptor-deficient mice. Int Immunopharmacol 2002; 2:745-50.

Miyamoto K, Iwase M, Nyui M et al. Histamine type 1 receptor deficiency reduces airway inflammation in a murine asthma model. Int Arch Allergy Immunol 2006; 140:215-22.

Perlis RH, Adams DH, Fijal B et al. Genetic association study of treatment response with olanzapine/fluoxetine combination or lamotrigine in bipolar I depression. J Clin Psychiatry 2010; 71:599-605.

Reynolds GP, Kirk SL. Metabolic side effects of antipsychotic drug treatment-pharmacological mechanisms. Pharmacol Ther 2010; 125:169-79.

Russell T, Stoltz M, Weir S. Pharmacokinetics, pharmacodynamics, and tolerance of single- and multiple-dose fexofenadine hydrochloride in healthy male volunteers. Clin Pharmacol Ther 1998; 64:612-21.

Sander LE, Lorentz A, Sellge G et al. Selective expression of histamine receptors H1R, H2R, and H4R, but not H3R, in the human intestinal tract. Gut 2006; 55:498.

Simons FE, Silver NA, Gu X, Simons KJ. Skin concentrations of H1-receptor antagonists. J Allergy Clin Immunol 2001; 107:526-30.

Vehof J, Risselada AJ, Al Hadithy AF et al. Association of genetic variants of the histamine H1 and muscarinic M3 receptors with BMI and HbA1c values in patients on antipsychotic medication. Psychopharmacology 2011; 216:257-65.

Zhou Z, Vorperian VR, Gong Q, Zhang S, January CT. Block of HERG potassium channels by the antihistamine astemizole and its metabolites desmethylastemizole and norastemizole. J Cardiovasc Electrophysiol 1999; 10:836-43.

Zlomuzica A, Ruocco LA, Sadile AG, Huston JP, Dere E. Histamine H1 receptor knockout mice exhibit impaired spatial memory in the eight-arm radial maze. Br J Pharmacol 2009; 157:86-91.

HRH2 (histamine receptor H2)

Diaz J, Vizuete ML, Traiffort E, Arrang JM, Ruat M, Schwartz JC. Localization of the histamine H2 receptor and gene transcripts in rat stomach: back to parietal cells. Biochem Biophys Res Commun 1994; 198:1195-202.

García-Martín E, Ayuso P, Martínez C, Blanca M, Agúndez JA. Histamine pharmacogenomics. Pharmacogenomics 2009; 10:867-83.

Jutel M, Watanabe T, Klunker S et al. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 2001; 413:420-5.

Meletiadis J, Chanock S, Walsh TJ. Defining targets for investigating the pharmacogenomics of adverse drug reactions to antifungal agents. Pharmacogenomics 2008; 9:561-84.

Morrow T. Implications of pharmacogenomics in the current and future treatment of asthma. J Manag Care Pharm 2007; 13:497-505.

Sugimoto M, Furuta T, Shirai N et al. Treatment strategy to eradicate Helicobacter pylori infection: impact of pharmacogenomics-based acid inhibition regimen and alternative antibiotics. Expert Opin Pharmacother 2007; 8:2701-17.

Wyllie JH. Histamine H2-receptor antagonist in treatment of peptic ulcer. Postgrad Med 1978; 63:91-6, 100.

HSD17B1 (hydroxysteroid (17-beta) dehydrogenase 1)

Cheng ZN, Zhou HH. Contribution of genetic variations in estradiol biosynthesis and metabolism enzymes to osteoporosis. Acta Pharmacol Sin 2000; 21:587-90.

Gaudet MM, Chanock S, Dunning A et al. HSD17B1 genetic variants and hormone receptor-defined breast cancer. Cancer Epidemiol Biomarkers Prev 2008; 17:2766-72.

Kraft P, Pharoah P, Chanock SJ et al. Genetic variation in the HSD17B1 gene and risk of prostate cancer. PLoS Genet 2005. doi:10. 1371/journal. pgen. 0010068.

Lamminen T, Saloniemi T, Huhtinen K et al. In vivo mouse model for analysis of hydroxysteroid (17beta) dehydrogenase 1 inhibitors. Mol Cell Endocrinol 2009; 301:158-62.

Shen Z, Saloniemi T, Rönnblad A, Järvensivu P, Pakarinen P, Poutanen M. Sex steroid-dependent and -independent action of hydroxysteroid (17beta) Dehydrogenase 2: evidence from transgenic female mice. Endocrinology 2009; 150:4941-9.

Suzuki M, Muto S, Hara K et al. Single-nucleotide polymorphisms in the 17beta-hydroxysteroid dehydrogenase genes might predict the risk of side-effects of estramustine phosphate sodium in prostate cancer patients. Int J Urol 2005; 12:166-72.

Tsuchiya M, Nakao H, Katoh T et al. Association between endometriosis and genetic polymorphisms of the estradiol-synthesizing enzyme genes HSD17B1 and CYP19. Hum Reprod 2005; 20:974-8.

HSPA1L (heat shock 70kDa protein 1-like)

Alfirevic A, Mills T, Harrington P et al. Serious carbamazepine-induced hypersensitivity reactions associated with the HSP70 gene cluster. Pharmacogenet Genomics 2006; 16:287-96.

Alfirevic A, Vilar FJ, Alsbou M et al. TNF, LTA, HSPA1L and HLA-DR gene polymorphisms in HIV-positive patients with hypersensitivity to cotrimoxazole. Pharmacogenomics 2009; 10:531-40.

Bowers DJ, Calvano JE, Alvarez SM et al. Polymorphisms of heat shock protein-70 (HSPA1B and HSPA1L loci) do not influence infection or outcome risk in critically ill surgical patients. Shock 2006; 25:117-22.

Fürnrohr BG, Wach S, Kelly JA et al. Polymorphisms in the Hsp70 gene locus are genetically associated with systemic lupus erythematosus. Ann Rheum Dis 2010; 69:1983-9.

Kim JJ, Mandelli L, Lim S et al. Association analysis of heat shock protein 70 gene polymorphisms in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2008; 258:239-44.

Martin AM, Nolan D, Gaudieri S et al. Predisposition to abacavir hypersensitivity conferred by HLA-B*5701 and a haplotypic Hsp70-Hom variant. Proc Natl Acad Sci USA 2004; 101:4180-5.

Pae CU, Drago A, Kim JJ, Mandelli L, de Ronchi D, Serretti A. The impact of heat shock protein 70 gene variations on clinical presentation and outcome in schizophrenic inpatients. Neuropsychobiology 2009; 59:135-41.

Spagnolo P, Sato H, Marshall SE et al. Association between heat shock protein 70/Hom genetic polymorphisms and uveitis in patients with sarcoidosis. Invest Ophthalmol Vis Sci 2007; 48:3019-25.

HTR1A (5-hydroxytryptamine (serotonin) receptor 1A)

Audero E, Coppi E, Mlinar B et al. Sporadic autonomic dysregulation and death associated with excessive serotonin autoinhibition. Science 2008; 321:130-3.

Chow TW, Pollock BG, Milgram NW. Potential cognitive enhancing and disease modification effects of SSRIs for Alzheimer’s disease. Neuropsychiatr Dis Treat 2007; 3:627-36.

Drago A, Ronchi DD, Serretti A. 5-HT1A gene variants and psychiatric disorders: a review of current literature and selection of SNPs for future studies. Int J Neuropsychopharmacol 2008; 11:701-21.

Drago A, Ronchi DD, Serretti A. Pharmacogenetics of antidepressant response: an update. Hum Genomics 2009; 3:257-74.

Hong CJ, Chen TJ, Yu YW, Tsai SJ. Response to fluoxetine and serotonin 1A receptor (C-1019G) polymorphism in Taiwan Chinese major depressive disorder. Pharmacogenomics J 2006; 6:27-33.

Kato M, Fukuda T, Wakeno M et al. Effect of 5-HT1A gene polymorphisms on antidepressant response in major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 2009; 150:115-23.

Kishi T, Okochi T, Tsunoka T et al. Serotonin 1A receptor gene, schizophrenia and bipolar disorder: an association study and meta-analysis. Psychiatry Res 2011; 185:20-6.

Kishi T, Tsunoka T, Ikeda M et al. Serotonin 1A receptor gene and major depressive disorder: an association study and meta-analysis. J Hum Genet 2009; 54:629-33.

Le François B, Czesak M, Steubl D, Albert PR. Transcriptional regulation at a HTR1A polymorphism associated with mental illness. Neuropharmacology 2008; 55:977-85.

Lemonde S, Du L, Bakish D, Hrdina P, Albert PR. Association of the C(-1019)G 5-HT1A functional promoter polymorphism with antidepressant response. Int J Neuropsychopharmacol 2004; 7:501-6.

Lin E, Chen PS. Pharmacogenomics with antidepressants in the STAR*D study. Pharmacogenomics 2008; 9:935-46.

Lotrich FE, Pollock BG. Candidate genes for antidepressant response to selective serotonin reuptake inhibitors. Neuropsychiatr Dis Treat 2005; 1:17-35.

Peters EJ, Slager SL, Jenkins GD et al. Resequencing of serotonin-related genes and association of tagging SNPs to citalopram response. Pharmacogenet Genomics 2009; 19:1-10.

Savitz J, Lucki I, Drevets WC. 5-HT(1A) receptor function in major depressive disorder. Prog Neurobiol 2009; 88:17-31.

Savitz JB, Drevets WC. Imaging phenotypes of major depressive disorder: genetic correlates. Neuroscience 2009; 164:300-30.

Suzuki Y, Sawamura K, Someya T. The effects of a 5-hydroxytryptamine 1A receptor gene polymorphism on the clinical response to fluvoxamine in depressed patients. Pharmacogenomics J 2004; 4:283-6.

Villafuerte SM, Vallabhaneni K, Sliwerska E, McMahon FJ, Young EA, Burmeister M. SSRI response in depression may be influenced by SNPs in HTR1B and HTR1A. Psychiatr Genet 2009; 19:281-91.

Yasuno F, Suhara T, Ichimiya T, Takano A, Ando T, Okubo Y. Decreased 5-HT1A receptor binding in amygdala of schizophrenia. Biol Psychiatry 2004; 55:439-44.

Yu YW, Tsai SJ, Liou YJ, Hong CJ, Chen TJ. Association study of two serotonin 1A receptor gene polymorphisms and fluoxetine treatment response in Chinese major depressive disorders. Eur Neuropsychopharmacol 2006; 16:498-503.

HTR1B (5-hydroxytryptamine (serotonin) receptor 1B)

Bergen AW, van den Bree MB, Yeager M et al. Candidate genes for anorexia nervosa in the 1p33-36 linkage region: serotonin 1D and delta opioid receptor loci exhibit significant association to anorexia nervosa. Mol Psychiatry 2003; 8:397-406.

Bonaventure P, Umans L, Bakker MH et al. Humanization of mouse 5-hydroxytryptamine1B receptor gene by homologous recombination: in vitro and in vivo characterization. Mol Pharmacol 1999; 56:54-67.

Brüss M, Bönisch H, Bühlen M, Nöthen MM, Propping P, Göthert M. Modified ligand binding to the naturally occurring Cys-124 variant of the human serotonin 5-HT1B receptor. Pharmacogenetics 1999; 9:95-102.

Cao JX, Hu J, Ye XM et al. Association between the 5-HTR1B gene polymorphisms and alcohol dependence in a Han Chinese population. Brain Res 2011; 1376:1-9.

Clark MS, Neumaier JF. The 5-HT1B receptor: behavioral implications. Psychopharmacol Bull 2001; 35:170-85.

Conner TS, Jensen KP, Tennen H, Furneaux HM, Kranzler HR, Covault J. Functional polymorphisms in the serotonin 1B receptor gene (HTR1B) predict self-reported anger and hostility among young men. Am J Med Genet B Neuropsychiatr Genet 2010; 153:67-78.

Denys D, van Nieuwerburgh F, Deforce D, Westenberg HG. Association between serotonergic candidate genes and specific phenotypes of obsessive compulsive disorder. J Affect Disord 2006; 91:39-44.

Drago A, Alboni S, Nicoletta B, de Ronchi D, Serretti A. HTR1B as a risk profile maker in psychiatric disorders: a review through motivation and memory. Eur J Clin Pharmacol 2010; 66:5-27.

Forero DA, Arboleda GH, Vasquez R, Arboleda H. Candidate genes involved in neural plasticity and the risk for attention-deficit hyperactivity disorder: a meta-analysis of 8 common variants. J Psychiatry Neurosci 2009; 34:361-6.

Guimarães AP, Schmitz M, Polanczyk GV et al. Further evidence for the association between attention deficit/hyperactivity disorder and the serotonin receptor 1B gene. J Neural Transm 2009; 116:1675-80.

Huang YY, Oquendo MA, Friedman JM et al. Substance abuse disorder and major depression are associated with the human 5-HT1B receptor gene (HTR1B) G861C polymorphism. Neuropsychopharmacology 2003; 28:163-9.

Kiel S, Brüss M, Bönisch H, Göthert M. Pharmacological properties of the naturally occurring Phe-124-Cys variant of the human 5-HT1B receptor: changes in ligand binding, G-protein coupling and second messenger formation. Pharmacogenetics 2000; 10:655-66.

Mehrotra S, Vanmolkot KR, Frants RR, van den Maagdenberg AM, Ferrari MD, MaassenVanDenBrink A. The phe-124-Cys and A-161T variants of the human 5-HT1B receptor gene are not major determinants of the clinical response to sumatriptan. Headache 2007; 47:711-6.

Proudnikov D, LaForge KS, Hofflich H et al. Association analysis of polymorphisms in serotonin 1B receptor (HTR1B) gene with heroin addiction: a comparison of molecular and statistically estimated haplotypes. Pharmacogenet Genomics 2006; 16:25-36.

Sanders AR, Duan J, Gejman PV. DNA variation and psychopharmacology of the human serotonin receptor 1B (HTR1B) gene. Pharmacogenomics 2002; 3:745-62.

Silberstein SD, McCrory DC. Ergotamine and dihydroergotamine: history, pharmacology, and efficacy. Headache 2003; 43:144-66.

Tepper SJ, Rapoport AM, Sheftell FD. Mechanisms of action of the 5-HT1B/1D receptor agonists. Arch Neurol 2002; 59:1084-8.

Velati D, Viana M, Cresta S et al. 5-Hydroxytryptamine1B receptor and triptan response in migraine, lack of association with common polymorphisms. Eur J Pharmacol 2008; 580:43-7.

Villafuerte SM, Vallabhaneni K, Sliwerska E, McMahon FJ, Young EA, Burmeister M. SSRI response in depression may be influenced by SNPs in HTR1B and HTR1A. Psychiatr Genet 2009; 19:281-91.

HTR1D (5-hydroxytryptamine (serotonin) receptor 1D)

Banaschewski T, Becker K, Scherag S, Franke B, Coghill D. Molecular genetics of attention-deficit/hyperactivity disorder: an overview. Eur Child Adolesc Psychiatry 2010; 19:237-57.

Brown KM, Bujac SR, Mann ET, Campbell DA, Stubbins MJ, Blundell JE. Further evidence of association of OPRD1 & HTR1D polymorphisms with susceptibility to anorexia nervosa. Biol Psychiatry 2007; 61:367-73.

Johnson KW, Phebus LA, Cohen ML. Serotonin in migraine: theories, animal models and emerging therapies. Prog Drug Res 1998; 51:219-44.

Li J, Zhang X, Wang Y et al. The serotonin 5-HT1D receptor gene and attention-deficit hyperactivity disorder in Chinese Han subjects. Am J Med Genet B Neuropsychiatr Genet 2006; 141:874-6.

Silberstein SD, McCrory DC. Ergotamine and dihydroergotamine: history, pharmacology, and efficacy. Headache 2003; 43:144-66.

HTR2A (5-hydroxytryptamine (serotonin) receptor 2A)

Arias B, Gutiérrez B, Pintor L, Gastó C, Fañanás L. Variability in the 5-HT(2A) receptor gene is associated with seasonal pattern in major depression. Mol Psychiatry 2001; 6:239-42.

Chen SF, Shen YC, Chen CH. HTR2A A-1438G/T102C polymorphisms predict negative symptoms performance upon aripiprazole treatment in schizophrenic patients. Psychopharmacology 2009; 205:285-92.

Cho IH, Yoo HJ, Park M, Lee YS, Kim SA. Family-based association study of 5-HTTLPR and the 5-HT2A receptor gene polymorphisms with autism spectrum disorder in Korean trios. Brain Res 2007; 1139:34-41.

Choi MJ, Kang RH, Ham BJ, Jeong HY, Lee MS. Serotonin receptor 2A gene polymorphism (-1438A/G) and short-term treatment response to citalopram. Neuropsychobiology 2005; 52:155-62.

Choi MJ, Lee HJ, Lee HJ et al. Association between major depressive disorder and the -1438A/G polymorphism of the serotonin 2A receptor gene. Neuropsychobiology 2004; 49:38-41.

Davies MA, Setola V, Strachan RT et al. Pharmacologic analysis of non-synonymous coding h5-HT2A SNPs reveals alterations in atypical antipsychotic and agonist efficacies. Pharmacogenomics J 2006; 6:42-51.

Fanous AH, Chen X, Wang X et al. Genetic variation in the serotonin 2A receptor and suicidal ideation in a sample of 270 Irish high-density schizophrenia families. Am J Med Genet B Neuropsychiatr Genet 2009; 150:411-7.

Garbett K, Gal-Chis R, Gaszner G, Lewis DA, Mirnics K. Transcriptome alterations in the prefrontal cortex of subjects with schizophrenia who committed suicide. Neuropsychopharmacol Hung 2008; 10:9-14.

Guhathakurta S, Singh AS, Sinha S et al. Analysis of serotonin receptor 2A gene (HTR2A): association study with autism spectrum disorder in the Indian population and investigation of the gene expression in peripheral blood leukocytes. Neurochem Int 2009; 55:754-9.

Guimarães AP, Zeni C, Polanczyk GV et al. Serotonin genes and attention deficit/hyperactivity disorder in a Brazilian sample: preferential transmission of the HTR2A 452His allele to affected boys. Am J Med Genet B Neuropsychiatr Genet 2007; 144:69-73.

Gunes A, Melkersson KI, Scordo MG, Dahl ML. Association between HTR2C and HTR2A polymorphisms and metabolic abnormalities in patients treated with olanzapine or clozapine. J Clin Psychopharmacol 2009; 29:65-8.

Heck A, Lieb R, Ellgas A et al. Investigation of 17 candidate genes for personality traits confirms effects of the HTR2A gene on novelty seeking. Genes Brain Behav 2009; 8:464-72.

Illi A, Setälä-Soikkeli E, Viikki M et al. 5-HTR1A, 5-HTR2A, 5-HTR6, TPH1 and TPH2 polymorphisms and major depression. Neuroreport 2009; 20:1125-8.

Joober R, Benkelfat C, Brisebois K et al. T102C polymorphism in the 5HT2A gene and schizophrenia: relation to phenotype and drug response variability. J Psychiatry Neurosci 1999; 24:141-6.

Kang RH, Choi MJ, Paik JW, Hahn SW, Lee MS. Effect of serotonin receptor 2A gene polymorphism on mirtazapine response in major depression. Int J Psychiatry Med 2007; 37:315-29.

Kato M, Fukuda T, Wakeno M et al. Effects of the serotonin type 2A, 3A and 3B receptor and the serotonin transporter genes on paroxetine and fluvoxamine efficacy and adverse drug reactions in depressed Japanese patients. Neuropsychobiology 2006; 53:186-95.

Laje G, Cannon DM, Allen AS et al. Genetic variation in HTR2A influences serotonin transporter binding potential as measured using PET and [11C]DASB. Int J Neuropsychopharmacol 2010; 13:715-24.

Lane HY, Chang YC, Chiu CC, Chen ML, Hsieh MH, Chang WH. Association of risperidone treatment response with a polymorphism in the 5-HT(2A) receptor gene. Am J Psychiatry 2002; 159:1593-5.

McAuley EZ, Fullerton JM, Blair IP, Donald JA, Mitchell PB, Schofield PR. Association between the serotonin 2A receptor gene and bipolar affective disorder in an Australian cohort. Psychiatr Genet 2009; 19:244-52.

McMahon FJ, Buervenich S, Charney D et al. Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am J Hum Genet 2006; 78:804-14.

Melkersson K, Hulting AL. Serotonin receptor 2A gene polymorphisms and schizophrenia: association with family history, diagnostic subtype and height in patients. Neuro Endocrinol Lett 2009; 30:343-51.

Melkersson KI, Gunes A, Dahl ML. Impact of serotonin receptor 2A gene haplotypes on C-peptide levels in clozapine- and olanzapine-treated patients. Hum Psychopharmacol 2010; 25:347-52.

Molnar E, Lazary J, Benko A et al. Seasonality and winter-type seasonal depression are associated with the rs731779 polymorphism of the serotonin-2A receptor gene. Eur Neuropsychopharmacol 2010; 20:655-62.

Nicholl BI, Holliday KL, Macfarlane GJ et al. Association of HTR2A polymorphisms with chronic widespread pain and the extent of musculoskeletal pain: Results from two population-based cohorts. Arthritis Rheum 2011; 63:810-8.

Norton N, Owen MJ. HTR2A: association and expression studies in neuropsychiatric genetics. Ann Med 2005; 37:121-9.

Panconesi A, Anselmi B, Curradi C, Perfetto F, Piluso A, Franchi G. Comparison between venoconstrictor effects of sumatriptan and ergotamine in migraine patients. Headache 1994; 34:194-7.

Polina ER, Contini V, Hutz MH, Bau CH. The serotonin 2A receptor gene in alcohol dependence and tobacco smoking. Drug Alcohol Depend 2009; 101:128-31.

Serretti A, Drago A, de Ronchi D. HTR2A gene variants and psychiatric disorders: a review of current literature and selection of SNPs for future studies. Curr Med Chem 2007; 14:2053-69.

Sigmund JC, Vogler C, Huynh KD, de Quervain DJ, Papassotiropoulos A. Fine-mapping at the HTR2A locus reveals multiple episodic memory-related variants. Biol Psychol 2008; 79:239-42.

Uher R, Huezo-Diaz P, Perroud N et al. Genetic predictors of response to antidepressants in the GENDEP project. Pharmacogenomics J 2009; 9:225-33.

Veenstra-VanderWeele J, Kim SJ, Lord C et al. Transmission disequilibrium studies of the serotonin 5-HT2A receptor gene (HTR2A) in autism. Am J Med Genet 2002; 114:277-83.

Wilkie MJ, Smith G, Day RK et al. Polymorphisms in the SLC6A4 and HTR2A genes influence treatment outcome following antidepressant therapy. Pharmacogenomics J 2009; 9:61-70.

Yamanouchi Y, Iwata N, Suzuki T, Kitajima T, Ikeda M, Ozaki N. Effect of DRD2, 5-HT2A, and COMT genes on antipsychotic response to risperidone. Pharmacogenomics J 2003; 3:356-61.

HTR2C (5-hydroxytryptamine (serotonin) receptor 2C)

Agomelatine: AGO 178, AGO178, S 20098. Drugs R D 2008; 9:177-83.

Arendt J, Rajaratnam SM. Melatonin and its agonists: an update. Br J Psychiatry 2008; 193:267-9.

Bai YM, Chen TT, Liou YJ, Hong CJ, Tsai SJ. Association between HTR2C polymorphisms and metabolic syndrome in patients with schizophrenia treated with atypical antipsychotics. Schizophr Res 2011; 125:179-86.

de Bodinat C, Guardiola-Lemaitre B, Mocaër E, Renard P, Muñoz C, Millan MJ. Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nat Rev Drug Discov 2010; 9:628-42.

de Luca V, Müller DJ, Hwang R et al. HTR2C haplotypes and antipsychotics-induced weight gain: X-linked multimarker analysis. Hum Psychopharmacol 2007; 22:463-7.

Dehning S, Müller N, Matz J et al. A genetic variant of HTR2C may play a role in the manifestation of Tourette syndrome. Psychiatr Genet 2010; 20:35-8.

Dolder CR, Nelson M, Snider M. Agomelatine treatment of major depressive disorder. Ann Pharmacother 2008; 42:1822-31.

Drago A, Serretti A. Focus on HTR2C: A possible suggestion for genetic studies of complex disorders. Am J Med Genet B Neuropsychiatr Genet 2009; 150:601-37.

Dubovsky SL, Warren C. Agomelatine, a melatonin agonist with antidepressant properties. Expert Opin Investig Drugs 2009; 18:1533-40.

Flomen R, Knight J, Sham P, Kerwin R, Makoff A. Evidence that RNA editing modulates splice site selection in the 5-HT2C receptor gene. Nucleic Acids Res 2004; 32:2113-22.

Gardiner K, Du Y. A-to-I editing of the 5HT2C receptor and behaviour. Brief Funct Genomic Proteomic 2006; 5:37-42.

Godlewska BR, Olajossy-Hilkesberger L, Ciwoniuk M et al. Olanzapine-induced weight gain is associated with the -759C/T and -697G/C polymorphisms of the HTR2C gene. Pharmacogenomics J 2009; 9:234-41.

Gurevich I, Tamir H, Arango V, Dwork AJ, Mann JJ, Schmauss C. Altered editing of serotonin 2C receptor pre-mRNA in the prefrontal cortex of depressed suicide victims. Neuron 2002; 34:349-56.

Hardeland R, Poeggeler B, Srinivasan V, Trakht I, Pandi-Perumal SR, Cardinali DP. Melatonergic drugs in clinical practice. Arzneimittelforschung 2008; 58:1-10.

Hieronymus J Derijks, Ronald HB, Meyboom RH et al. The association between antidepressant use and disturbances in glucose homeostasis: evidence from spontaneous reports. Eur J Clin Pharmacol 2008; 64:531–538.

Ikeda M, Yamanouchi Y, Kinoshita Y et al. Variants of dopamine and serotonin candidate genes as predictors of response to risperidone treatment in first-episode schizophrenia. Pharmacogenomics 2008; 9:1437-43.

Iordanidou M, Tavridou A, Vasiliadis MV et al. The -759C/T polymorphism of the 5-HT2C receptor is associated with type 2 diabetes in male and female Caucasians. Pharmacogenet Genomics 2008; 18:153-9.

Kennedy SH. Agomelatine: efficacy at each phase of antidepressant treatment. CNS Drugs 2009; 23 Suppl 2:41-7.

Kiezebrink K, Mann ET, Bujac SR, Stubbins MJ, Campbell DA, Blundell JE. Evidence of complex involvement of serotonergic genes with restrictive and binge purge subtypes of anorexia nervosa. World J Biol Psychiatry 2010; 11:824-33.

Li S, Zhao JH, Luan J et al. Physical activity attenuates the genetic predisposition to obesity in 20,000 men and women from EPIC-Norfolk prospective population study. PLoS Med 2010. doi:10. 1371/journal. pmed. 1000332.

Liu BC, Zhang J, Wang L et al. HTR2C promoter polymorphisms are associated with risperidone efficacy in Chinese female patients. Pharmacogenomics 2010; 11:685-92.

Malhotra AK, Goldman D, Ozaki N et al. Clozapine response and the 5HT2C Cys23Ser polymorphism. Neuroreport 1996; 7:2100-2.

Millan MJ, Brocco M, Gobert A, Dekeyne A. Anxiolytic properties of agomelatine, an antidepressant with melatoninergic and serotonergic properties: role of 5-HT2C receptor blockade. Psychopharmacology 2005; 177:448-58.

Mulder H, Cohen D, Scheffer H et al. HTR2C gene polymorphisms and the metabolic syndrome in patients with schizophrenia: a replication study. J Clin Psychopharmacol 2009; 29:16-20.

Mulder H, Franke B, van der-Beek AA et al. The association between HTR2C polymorphisms and obesity in psychiatric patients using antipsychotics: a cross-sectional study. Pharmacogenomics J 2007; 7:318-24.

Mulder H, Franke B, van der-Beek van der AA et al. The association between HTR2C gene polymorphisms and the metabolic syndrome in patients with schizophrenia. J Clin Psychopharmacol 2007; 27:338-43.

Olié JP, Kasper S. Efficacy of agomelatine, a MT1/MT2 receptor agonist with 5-HT2C antagonistic properties, in major depressive disorder. Int J Neuropsychopharmacol 2007; 10:661-73.

Owen RT. Agomelatine: a novel pharmacological approach to treating depression. Drugs Today 2009; 45:599-608.

Peters EJ, Slager SL, McGrath PJ, Knowles JA, Hamilton SP. Investigation of serotonin-related genes in antidepressant response. Mol Psychiatry 2004; 9:879-89.

Popoli M. Agomelatine: innovative pharmacological approach in depression. CNS Drugs 2009; 23 Suppl 2:27-34.

Reynolds GP, Hill MJ, Kirk SL. The 5-HT2C receptor and antipsychoticinduced weight gain – mechanisms and genetics. J Psychopharmacol 2006; 20(4 Suppl):15-8.

Reynolds GP, Yao Z, Zhang X, Sun J, Zhang Z. Pharmacogenetics of treatment in first-episode schizophrenia: D3 and 5-HT2C receptor polymorphisms separately associate with positive and negative symptom response. Eur Neuropsychopharmacol 2005; 15:143-51.

Risselada AJ, Vehof J, Bruggeman R et al. Association between HTR2C gene polymorphisms and the metabolic syndrome in patients using antipsychotics: a replication study. Pharmacogenomics J 2010. doi:10. 1038/tpj. 2010. 66.

San L, Arranz B. Agomelatine: a novel mechanism of antidepressant action involving the melatonergic and the serotonergic system. Eur Psychiatry 2008; 23:396-402.

Sodhi MS, Arranz MJ, Curtis D et al. Association between clozapine response and allelic variation in the 5-HT2C receptor gene. Neuroreport 1995; 7:169-72.

Vimaleswaran KS, Zhao JH, Wainwright NW, Surtees PG, Wareham NJ, Loos RJ. Association between serotonin 5-HT-2C receptor gene (HTR2C) polymorphisms and obesity- and mental health-related phenotypes in a large population-based cohort. Int J Obes 2010; 34:1028-33.

HTR3A (5-hydroxytryptamine (serotonin) receptor 3A)

Anderson BM, Schnetz-Boutaud NC, Bartlett J et al. Examination of association of genes in the serotonin system to autism. Neurogenetics 2009; 10:209-16.

Faerber L, Drechsler S, Ladenburger S, Gschaidmeier H, Fischer W. The neuronal 5-HT3 receptor network after 20 years of research-evolving concepts in management of pain and inflammation. Eur J Pharmacol 2007; 560:1-8.

Gregory RE, Ettinger DS. 5-HT3 receptor antagonists for the prevention of chemotherapy-induced nausea and vomiting. A comparison of their pharmacology and clinical efficacy. Drugs 1998; 55:173-89.

Gu B, Wang L, Zhang AP et al. Association between a polymorphism of the HTR3A gene and therapeutic response to risperidone treatment in drug-naive Chinese schizophrenia patients. Pharmacogenet Genomics 2008; 18:721-7.

Gutiérrez B, Arranz MJ, Huezo-Diaz P et al. Novel mutations in 5-HT3A and 5-HT3B receptor genes not associated with clozapine response. Schizophr Res 2002; 58:93-7.

Hammer C, Kapeller J, Endele M et al. Functional variants of the serotonin receptor type 3A and B gene are associated with eating disorders. Pharmacogenet Genomics 2009; 19:790-9.

Haus U, Späth M, Färber L. Spectrum of use and tolerability of 5-HT3 receptor antagonists. Scand J Rheumatol Suppl 2004; 119:12-8.

Iidaka T, Ozaki N, Matsumoto A et al. A variant C178T in the regulatory region of the serotonin receptor gene HTR3A modulates neural activation in the human amygdala. J Neurosci 2005; 25:6460-6.

Ji X, Takahashi N, Saito S et al. Relationship between three serotonin receptor subtypes (HTR3A, HTR2A and HTR4) and treatment-resistant schizophrenia in the Japanese population. Neurosci Lett 2008; 435:95-8.

Jönsson EG, Bah J, Melke J et al. Monoamine related functional gene variants and relationships to monoamine metabolite concentrations in CSF of healthy volunteers. BMC Psychiatry 2004; 4:4.

Kaiser R, Tremblay PB, Sezer O, Possinger K, Roots I, Brockmöller J. Investigation of the association between 5-HT3A receptor gene polymorphisms and efficiency of antiemetic treatment with 5-HT3 receptor antagonists. Pharmacogenetics 2004; 14:271-8.

Melke J, Westberg L, Nilsson S et al. A polymorphism in the serotonin receptor 3A (HTR3A) gene and its association with harm avoidance in women. Arch Gen Psychiatry 2003; 60:1017-23.

Mizuta N, Akiyoshi J, Sato A et al. Serotonin receptor 3A (HTR3A) gene is associated with personality traits, but not panic disorder. Psychiatr Genet 2008; 18:44.

Mössner R, Döring N, Scherag A et al. Transmisión disequilibrium analysis of the functional 5-HT3A receptor variant C178T in early-onset obsessive compulsive-disorder. J Psychopharmacol 2007; 21:833-6.

Niesler B, Flohr T, Nöthen MM et al. Association between the 5’ UTR variant C178T of the serotonin receptor gene HTR3A and bipolar affective disorder. Pharmacogenetics 2001; 11:471-5.

Niesler B, Kapeller J, Hammer C, Rappold G. Serotonin type 3 receptor genes: HTR3A, B, C, D, E. Pharmacogenomics 2008; 9:501-4.

Niesler B, Weiss B, Fischer C et al. Serotonin receptor gene HTR3A variants in schizophrenic and bipolar affective patients. Pharmacogenetics 2001; 11:21-7.

Schuhmacher A, Mössner R, Quednow BB et al. Influence of 5-HT3 receptor subunit genes HTR3A, HTR3B, HTR3C, HTR3D and HTR3E on treatment response to antipsychotics in schizophrenia. Pharmacogenet Genomics 2009; 19:843-51.

Souza RP, de Luca V, Meltzer HY, Lieberman JA, Kennedy JL. Influence of serotonin 3A and 3B receptor genes on clozapine treatment response in schizophrenia. Pharmacogenet Genomics 2010; 20:274-6.

Windemuth A, Calhoun VD, Pearlson GD, Kocherla M, Jagannathan K, Ruaño G. Physiogenomic analysis of localized FMRI brain activity in schizophrenia. Ann Biomed Eng 2008; 36:877-88.

HTR3B (5-hydroxytryptamine (serotonin) receptor 3B)

Ji X, Takahashi N, Branko A et al. An association between serotonin receptor 3B gene (HTR3B) and treatment-resistant schizophrenia (TRS) in a Japanese population. Nagoya J Med Sci 2008; 70:11-7.

Kato M, Serretti A. Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry 2010; 15:473-500.

Krzywkowski K, Davies PA, Feinberg-Zadek PL, Bräuner-Osborne H, Jensen AA. High-frequency HTR3B variant associated with major depression dramatically augments the signaling of the human 5-HT3AB receptor. Proc Natl Acad Sci USA 2008; 105:722-7.

Krzywkowski K, Davies PA, Irving AJ, Bräuner-Osborne H, Jensen AA. Characterization of the effects of four HTR3B polymorphisms on human 5-HT3AB receptor expression and signalling. Pharmacogenet Genomics 2008; 18:1027-40.

Meineke C, Tzvetkov MV, Bokelmann K et al. Functional characterization of a -100_-102delAAG deletion-insertion polymorphism in the promoter region of the HTR3B gene. Pharmacogenet Genomics 2008; 18:219-30.

Niesler B, Kapeller J, Hammer C, Rappold G. Serotonin type 3 receptor genes: HTR3A, B, C, D, E. Pharmacogenomics 2008; 9:501-4.

Ruaño G, Thompson PD, Windemuth A et al. Physiogenomic association of statin-related myalgia to serotonin receptors. Muscle Nerve 2007; 36:329-35.

Walstab J, Hammer C, Bönisch H, Rappold G, Niesler B. Naturally occurring variants in the HTR3B gene significantly alter properties of human heteromeric 5-hydroxytryptamine-3A/B receptors. Pharmacogenet Genomics 2008; 18:793-802.

Yamada K, Hattori E, Iwayama Y. Distinguishable haplotype blocks in the HTR3A and HTR3B region in the Japanese reveal evidence of association of HTR3B with female major depression. Biol Psychiatry 2006; 60:192-201.

HTR3C (5-hydroxytryptamine (serotonin) receptor 3, family member C)

Fasching PA, Kollmannsberger B, Strissel PL et al. Polymorphisms in the novel serotonin receptor subunit gene HTR3C show different risks for acute chemotherapy-induced vomiting after anthracycline chemotherapy. J Cancer Res Clin Oncol 2008; 134:1079-86.

Goecke TW, Ekici AB, Niesler B et al. Two naturally occurring variants of the serotonin receptor gene HTR3C are associated with nausea in pregnancy. Acta Obstet Gynecol Scand 2010; 89:7-14.

Halevi S, Yassin L, Eshel M et al. Conservation within the RIC-3 gene family. Effectors of mammalian nicotinic acetylcholine receptor expression. J Biol Chem 2003; 278:34411-7.

Rehnström K, Ylisaukko-oja T, Nummela I et al. Allelic variants in HTR3C show association with autism. Am J Med Genet B Neuropsychiatr Genet 2009; 150:741-6.

Rueffert H, Thieme V, Wallenborn J et al. Do variations in the 5-HT3A and 5-HT3B serotonin receptor genes (HTR3A and HTR3B) influence the occurrence of postoperative vomiting? Anesth Analg 2009; 109:1442-7.

Ward MB, Kotasek D, McKinnon RA. Investigation of HTR3C mutations for association with 5HT(3) receptor antagonist anti-emetic efficacy. Pharmacogenomics 2008; 9:1027-33.

HTR6 (5-hydroxytryptamine (serotonin) receptor 6)

Álvarez-Álvarez M, Galdos L, Fernández-Martínez M et al. 5-Hydroxytryptamine 6 receptor (5-HT(6)) receptor and apolipoprotein E (ApoE) polymorphisms in patients with Alzheimer’s disease in the Basque Country. Neurosci Lett 2003; 339:85-7.

Chiu HJ, Wang YC, Liou JH et al. Serotonin 6 receptor polymorphism in schizophrenia: frequency, age at onset and cognitive function. Neuropsychobiology 2001; 43:113-6.

Dubertret C, Hanoun N, Adès J, Hamon M, Gorwood P. Family-based association study of the serotonin-6 receptor gene (C267T polymorphism) in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2004; 126:10-5.

Fisas A, Codony X, Romero G et al. Chronic 5-HT6 receptor modulation by E-6837 induces hypophagia and sustained weight loss in diet-induced obese rats. Br J Pharmacol 2006; 148:973-83.

Garfield AS, Heisler LK. Pharmacological targeting of the serotonergic system for the treatment of obesity. J Physiol 2009; 587:49-60.

Geldenhuys WJ, van der Schyf CJ. Serotonin 5-HT6 receptor antagonists for the treatment of Alzheimer’s disease. Curr Top Med Chem 2008; 8:1035-48.

Geldenhuys WJ, van der Schyf CJ. The serotonin 5-HT6 receptor: a viable drug target for treating cognitive deficits in Alzheimer’s disease. Expert Rev Neurother 2009; 9:1073-85.

Heal DJ, Smith SL, Fisas A, Codony X, Buschmann H. Selective 5-HT6 receptor ligands: progress in the development of a novel pharmacological approach to the treatment of obesity and related metabolic disorders. Pharmacol Ther 2008; 117:207-31.

Illi A, Setälä-Soikkeli E, Viikki M et al. 5-HTR1A, 5-HTR2A, 5-HTR6, TPH1 and TPH2 polymorphisms and major depression. Neuroreport 2009; 20:1125-8.

Johnson CN, Ahmed M, Miller ND. 5-HT6 receptor antagonists: prospects for the treatment of cognitive disorders including dementia. Curr Opin Drug Discov Devel 2008; 11:642-54.

Kan R, Wang B, Zhang C et al. Association of the HTR6 polymorphism C267T with late-onset Alzheimer’s disease in Chinese. Neurosci Lett 2004; 372:27-9.

Lane HY, Lin CC, Huang CH, Chang YC, Hsu SK, Chang WH. Risperidone response and 5-HT6 receptor gene variance: genetic association analysis with adjustment for nongenetic confounders. Schizophr Res 2004; 67:63-70.

Lane HY, Liu YC, Huang CL et al. Risperidone-related weight gain: genetic and nongenetic predictors. J Clin Psychopharmacol 2006; 26:128-34.

Lane HY, Liu YC, Huang CL et al. Prefrontal executive function and D1, D3, 5-HT2A and 5-HT6 receptor gene variations in healthy adults. J Psychiatry Neurosci 2008; 33:47-53.

Lee SH, Lee KJ, Lee HJ, Ham BJ, Ryu SH, Lee MS. Association between the 5-HT6 receptor C267T polymorphism and response to antidepressant treatment in major depressive disorder. Psychiatry Clin Neurosci 2005; 59:140-5.

Masellis M, Basile VS, Meltzer HY et al. Lack of association between the T→C 267 serotonin 5-HT6 receptor gene (HTR6) polymorphism and prediction of response to clozapine in schizophrenia. Schizophr Res 2001; 47:49-58.

Messina D, Annesi G, Serra P et al. Association of the 5-HT6 receptor gene polymorphism C267T with Parkinson’s disease. Neurology 2002; 58:828-9.

Ohmori O, Shinkai T, Hori H, Nakamura J. Novel polymorphism in the 5’-upstream region of the human 5-HT6 receptor gene and schizophrenia. Neurosci Lett 2001; 310:17-20.

Perez-García G, Meneses A. Oral administration of the 5-HT6 receptor antagonists SB-357134 and SB-399885 improves memory formation in an autoshaping learning task. Pharmacol Biochem Behav 2005; 81:673-82.

Shacham S, Heal DJ, Cheetham SC et al. PRX-07034, a potent and selective 5-HT6 receptor antagonist, reduces food intake and body weight in dietary-induced obese (DIO) rats. Abstract Viewer/Itinerary Planner, Program No. 62. 10. Society for Neuroscience,Washington, DC. 2006.

Svartengren J, Axelsson-Lendin P, Edling N et al. The selective serotonin 5-HT6 receptor antagonist BVT-5182 decreases food intake and body weight in both rats and mice. Abstract Viewer/Itinerary Planner, Program No. 75. 8. Society for Neuroscience,Washington, DC. 2004.

Svartengren J, Fholenhag K, Modiri A et al. Preclinical in vivo pharmacology of BVT-933, a selective 5-HT2c receptor agonist. Abstract Viewer/Itinerary Planner, Program No. 509. 9. Society for Neuroscience,Washington, DC. 2003.

Thome J, Retz W, Baader M et al. Association analysis of HTR6 and HTR2A polymorphisms in sporadic Alzheimer’s disease. J Neural Transm 2001; 108:1175-80.

Tsai SJ, Liu HC, Liu TY, Wang YC, Hong CJ. Association analysis of the 5-HT6 receptor polymorphism C267T in Alzheimer’s disease. Neurosci Lett 1999; 276:138-9.

Upton N, Chuang TT, Hunter AJ, Virley DJ. 5-HT6 receptor antagonists as novel cognitive enhancing agents for Alzheimer’s disease. Neurotherapeutics 2008; 5:458-69.

Woolley ML, Bentley JC, Sleight AJ, Marsden CA, Fone KC. A role for 5-ht6 receptors in retention of spatial learning in the Morris water maze. Neuropharmacology 2001; 41:210-9.

Wu WH, Huo SJ, Cheng CY, Hong CJ, Tsai SJ. Association study of the 5-HT(6) receptor polymorphism (C267T) and symptomatology and antidepressant response in major depressive disorders. Neuropsychobiology 2001; 44:172-5.

HTT (huntingtin)

Abderrahmani A, Steinmann M, Plaisance V et al. The transcriptional repressor REST determines the cell-specific expression of the human MAPK8IP1 gene encoding IB1 (JIP-1). Molec Cell Biol 2001; 21:7256-627.

Adams P, Falek A, Arnold J. Hungtington disease in Georgia: age at onset. Am J Hum Genet 1988; 43:695-794.

Alam M, Caldwell B, Johnson R, Darlington D, Mains R, Eipper B. Novel proteins that interact with the COOH-terminal cystosolic routing determinants of an integral membrane peptide-processing enzyme. J Biol Chem 1996; 271:28636-40.

Alam M, Johnson R, Darlington D, Hand T, Mains R, Eipper B. Kalirin, a cytosolic protein with spectrin-like and GDP/GTP exchange factor-like domains that interacts with peptigylglycine alpha-amidating monooxygenase, an integral membrane peptide-processing enzyme. J Biol Chem 1997; 272:12667-75.

Ambrose C, Duyao M, Barnes G et al. Structure and expression of the Hungtington’s disease gene: evidence against simple inactivation due to an expansed CAG repeat. Somat Cell Molec Genet 1994; 20:27-38.

Andrew S, Goldberg Y, Kremer B et al. Hungtington disease without CAG expansion: phenocopies or errors in assignment? Am J Hum Genet 1994; 54:852-963.

Aronin N, Chase K, Young C et al. CAG expansion affects the expression of mutant hungtingtin in Huntington’s disease brain. Neuron 1995; 15:1193-201.

Auerbach W, Hulbert M, Hilditch-Maguire P et al. The HD mutation causes progressive lethal neurogical disease in mice expressing reduced levels of huntingtin. Hum Molec Genet 2001; 10:2515-23.

Bahn S, Mimmack M, Ryan M et al. Neuronal target of the neuron-restrictive silencer factor in neuropheres derived from fetuses with Down’s syndrome: a gene expression study. Lancet 2002; 359:310-5.

Bantubungi K, Jacquard C, Greco A et al. Minocycline in phenotypic models of Huntington’s disease. Neurobiol Dis 2005; 18:206-17.

Bates G, Mangiarini L, Mahal A, Davies S. Transgenic model of Huntingston’s disease. Hum Molec Genet 1997; 6:1633-7.

Boehnke M, Conneally P, Lange K. Two models for a maternal factor in the inheritance of Huntington disease. Am J Hum Genet 1983; 35:845-60.

Bradford J, Shin JY, Roberts M, Wang CE, Li X-J, Li SH. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc. Natl. Acad. Sci USA 2009; 106:22480-5.

Bradford J, Shin JY, Roberts M, Wang CE, Li X-J, Li SH. Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J Biol Chem 2010; 285:10653-61.

Buetow K, Shiang R, Yang P et al. A detailed multipoint map of human chromosome 4 provides evidence for linkage heterogeneity and position-specific recombination-specific recombination rates. Am J Hum Genet 1991; 48:911-25.

Burke JR, Enghild JJ, Martin ME et al. Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat Med 1996; 2:347-50.

Cacabelos R. Molecular genetics of Alzheimer’s disease and aging. Methods Find Exp Clin Pharmacol 2005; 27 Suppl A:1-573.

Cariello L, de Cristofaro T, Zanetti L et al. Transglutaminase activity is related to CAG repeat lengh in patients with Huntington’s disease. Hum Genet 1996; 98:633-5.

Charvin D, Roze E, Perrin V et al. Haloperidol protects striatal neurons from dysfunction induced by mutated huntingtin in vivo. Neurobiol Dis 2008; 29:22-9.

Chen S, Ferrone F, Wetzel R. Hungtington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc Nat Acad Sci USA 2002; 99:11884-9.

Chong S, Almqvist E, Telenius H et al. Contribution of DNA sequence and CAG size to mutation frequencies of intermediate alleles for Huntington disease: evidence from single sperm analyses. Hum Molec Genet 1997; 6:301-9.

Chopra V, Metzler M, Rasper D et al. HIP12 is a non-proapoptotic member of a gene family including HIP1, an interacting protein with huntingtin. Mammalian Genome 2000; 11:1006-15.

Clarke G, Collins R, Leavitt B et al. A one-hit model of cell death in inherited neuronal degenerations. Nature 2000; 406:195-9.

Colomer V, Engelender S, Sharp A et al. Huntingtin-associated protein 1 (HAP) binds to a Trio-like polypeptide, with a rac1 guanine nucleotide exchange factor domains. Hum Molec Genet 1997; 6:1519-25.

de Rooij K, Dorsman J, Smoor M, den Dunnen J, van Ommen G. Subnuclear localization of the Huntington’s disease gene product in cell lines by immunofluorescence and biochemical subcellular fractionation. Hum Molec Genet 1996; 5:1093-9.

DiFligia M, Sapp E, Chase K et al. Aggregation of huntingtin in neuronal intracellular inclusions and dystrophic neurites in brain. Science 1997; 277:1990-3.

Djousse L, Knowlton B, Hayden M et al. Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease. Am J Med Genet 2003; 119:279-82.

Duan W, Guo Z, Jiang H et al. Paroxetine retards disease onset and progression in Huntingtin mutant mice. Ann Neurol 2004; 55:590-4.

Dure L, Landwehrmeyer G, Golden J et al. IT15 gene expression in fetal human brain. Brain Res 1994; 659:33-41.

Duyao M, Ambrose C, Myers R et al. Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet 1993; 4:387-92.

Duyao M, Auerbach A, Ryan A et al. Inactivation of the mouse Hungtington’s disease gene homolog Hdh. Sciece 1995; 269:407-10.

Dyer R, McMurray C. Mutant protein in Huntington disease is resistant to proteolysis in affected brain. Nat Genet 2001; 29:270-8.

Engelender S, Sharp A, Colomer V et al. Huntingtin-associated protein 1 (HAP1) interacts with the p150(Glued) subunit of dynactin. Hum Molec Genet 1997; 6:2205-12.

Engqvist-Goldstein A, Kessels M, Chopra V, Hayden M, Drubin D. An actin-binding protein of the Sla2/Huntingtin interacting protein 1 family is a novel component of clathrin-coated pits and vesicles. J Clin Biol 1999; 147:1503-18.

Enna S, Bird E, Bennett J et al. Huntington’s chorea: changes in neurotransmitter receptors in the brain. New Eng J Med 1976; 294:1305-9.

Erickson R. Chromosomal imprinting and the parent transmission specific variation in expressivity of Huntington disease. Am J Hum Genet 1985; 37:827-9.

Faber P, Barnes G, Srinidhi J et al. Huntingtin interacts with a family of WW domain proteins. Hum Molec Genet 1998; 7:1463-74.

Farrer L, Conneally P. A genetic model for age at onset in Huntington disease. Am J Hum Genet 1985; 37:350-7.

Farrer L, Cupples L, Wiater P, Conneally P, Gusella J, Myers R. The normal Huntington disease (HD) allele, or a closely linked gene, influences age at onset of HD. Am J Hum Genet 1993; 53:125-30

Gauthier L, Charrin B, Borrell-Pages M et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 2004; 118:127-38.

Gellera C, Meoni C, Castellotti B et al. Errors in Huntington disease diagnostic test caused by trinucleotide deletion in the IT15 gene. Am J Hum Genet 1996; 59:475-7.

Gervais F, Singajara R, Xanthoudakis S et al. Recruitment and activation of caspase-8 by the huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nat Cell Biol 2002; 4:95-105.

Givan S, Sprague G. The ankyrin-repeat containing protein Akr1p is required for the endocytosis of yeast pheromone receptors. Molec Biol Cell 1997; 8:1317-27.

Goldberg Y, Nicholson D, Rasper D et al. Cleavage of huntingtin by apopain, a propoptotic cysteine protease, is modulated by the polyglutamine tract. Nat Genet 1996; 13:442-9.

Gu M, Gash M, Mann V, Javoy-Agid F, Cooper J, Schapira AHV. Mitochondrial defect in Huntington’s disease caudate nucleous. Ann Neurol 1996; 39:385-9.

Gusella J, Gibbons K, Hobbs W et al. The G8 locus linked to Huntington’s disease. Am J Hum Genet 1984; 36:139.

Gusella J, McNeil S, Persichetti F et al. Huntington’s disease. Cold Spring Harbor Symp Quant Biol 1996; 61:615-26.

Gusella J, Tranzi R, Bader P et al. Deletion of Huntington’s disease linked G8 (D4S10) locus in Wolf-Hirschhorn syndrome. Nature 1985; 318:75-8.

Gutekunst C, Levey A, Hilman C et al. Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies. Proc Nat Acad Sci USA 1995; 92:8710-4.

Hackam A, Yassa A, Singajara R et al. Huntingtin interacting protein 1 induces apoptosis via a novel caspase-dependent death effector domain. J Biol Chem 2000; 275:41299-308.

Hansson O, Peterson A, Leist M, Nicotera P, Castilho R, Brundin P. Transgenic mice expressing a Huntington’s disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity. Proc Nat Acad Sci USA 1999; 96:8727-32.

Harper P, Youngman S, Anderson M et al. Genetic linkage between Huntington’s disease and the DNA polymorphism G8 in South Wales families. J Med Genet 1985; 22:447-50.

Heiser V, Scherzinger E, Boeddrich A et al. Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: implications for Huntington’s disease therapy. Proc Nat Acad Sci USA 2000; 97:6739-44.

Hildich-Maguire P, Trettel F, Passani L, Auerbach A, Persichetti F, McDonald ME. Huntington: an iron-regulated protein essential for normal nuclear and perinuclear organelles. Hum Molec Genet 2000; 9:2789-97.

Hockly E, Richon V, Woodman B et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Nat Acad Sci USA 2003; 100:2041-6.

Hoogeveen A, Willemsen R, Meyer N et al. Characterization and localization of the Huntington’s disease gene products. Hum Molec Genet 1993; 2:2069-73.

Horton T, Graham B, Corral-Debrinsky M et al. Marked increase in mitochondrial DNA deletion levels in the cerebral cortex of Huntington’s disease patients. Neurology 1995; 45:1879-83.

Hyun TS, Rao DS, Saint-Dic D et al. HIP1 and HIP1r stabilize receptor tyrosine kinases and bind 3-phosphoinositides via epsin N-terminal homology domains. J Biol Chem 2004; 279:14294-306.

Illarioshkin SN, Igarashi S, Ondera O et al. Trinucleotide repeat length and rate of progresión of Huntington’s disease. Ann Neurol 1994; 36:630-5.

Itoh T, Koshiba S, Kigawa T, Kikuchi A, Yokoyama S, Takenawa T. Role of the ENTH domain in phosphatidylinositol-4,5-biosphate binding and endocytosis. Science 2001; 291:1047-51.

Jana N, Zemskov E, Wang G, Nukima N. Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome release. Hum Molec Genet 2001; 10:1049-59.

Kalchman M, Koide H, McCutcheon K et al. HIP1, a human homologue of S. cerevisiae Slap2, interacts with membrane-associated huntingtin in the brain. Nat Genet 1997; 16:44-53.

Kazantsev A, Walker H, Slepko N et al. A bivalent Huntingtin binding peptide suppresses polyglutamine aggregation and pathogenesis in Drosophila. Nat Genet 2002; 30:367-76.

Kazemi-Esfarjani P, Benzer S. Genetic suppression of polyglutamine toxicity in Drosophila. Science 2000; 287:1837-40.

Keene C, Rodrigues C, Eich T et al. A bile acid protects against motor and cognitive deficits and reduces striatal degeneration in the 3-nitroproprionic acid model of Huntington’s disease. Exp Neurol 2001; 171:351-60.

Keene C, Rodrigues C, Eich T, Chhabra M, Steer C, Low W. Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington. Proc Nat Acad Sci USA 2002; 99:10671-6.

Kegel K, Meloni A, Yi Y et al. Huntingtin is present in the nucleus, interacts with the transcriptional corepressor C-terminal binding protein, and represses transcription. J Biol Chem 2002; 277:7466-76.

Kennedy L, Shelbourne P. Dramatic mutation instability in HD mouse striatum: does polyglutamine load contribute to cell-specific vulnerability in Huntington’s disease? Hum Molec Genet 2000; 9:2539-44.

Kita H, Carmichael J, Swartz J et al. Modulation of polyglutamine-induced cell death by genes identified by expression profiling. Hum Molec Genet 2002; 11:2279-87.

Kovtun I, Therneau T, McMurray C. Gender of the embryo contributes to CAG instability in transgenic mice containing a Huntington’s disease gene. Hum Molec Genet 2000; 9:2767-75.

Laccone F, Christian W. A recurrent expansion of a maternal allele with 36 CAG repeats causes Huntington disease in two sisters. Am J Hum Genet 2000; 66:1145-8.

Landegent JE, Jansen in de Wal N, Fisser-Groen YM, Bakker E, van der Ploeg M, Pearson PL. Fine mapping of the Huntington disease linked D4S10 locus by non-radioactive in situ hybridization. Hum Genet 1986; 73:354-7.

Lanska DJ, Levine L, Lanska MJ, Schoenberg BS. Huntington’s disease mortality in the United States. Neurology 1988; 38:769-72.

Laowtammathron C, Cheng ECh, Cheng PH et al. Monkey hybrid stem cells develop cellular features of Huntington’s disease. BMC Cell Biol 2010; 11:12.

Leavitt BR, Guttman JA, Hodgson JG et al. Wild-type huntingtin reduces the cellular toxicity of mutant huntingtin in vivo. Am J Hum Genet 2001; 68:313-24.

Lee J, Park EH, Couture G, Harvey I, Garneau P, Pelletier J. An upstream open reading frame impedes translation of the huntingtin gene. Nucleic Acids Res 2002; 30:5110-9.

Lee S-J, Choi J-Y, Sung Y-M, Park H, Rhim H, Kang S. E3 ligase activity of RING finger proteins that interact with Hip-2, a human ubiquitin-conjugating enzyme. FEBS Lett 2001; 503:61-4.

Leeflang EP, Tavare S, Marjoram P et al. Single sperm analysis of the trinucleotide repeats in the Huntington’s disease gene: quantification of the mutation frequency spectrum. Hum Molec Genet 1995; 4:1519-26.

Leeflang EP, Tavare S, Marjoram P et al. Analysis of germine mutations spectra at the Huntington’s disease locus supports a mitotic mutations mechanism. Hum Molec Genet 1999; 8:173-83.

Leung CM, Chan YW, Chang CM, Yu YL, Chen CN. Huntington’s disease in Chinese: a hypothesis of its origin. J Neurol Neurosurg Psychiat 1992; 55:681-4.

Li H, Li SH, Johnston H, Shelbourne PF, Li XJ. Amino-terminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity. Nat Genet 2000; 25:385-9.

Li JL, Hayden MR, Almqvist EW et al. A genome scan for modifiers of age at onset in Huntington disease: the HD MAPS study. Am J Hum Genet 2003; 73:682-7.

Li M, Huang Y, Ma AA, Lin E, Diamond MI. Y-27632 improves rotarod performance and reduces huntingtin levels in R6/2 mice. Neurobiol Dis 2009; 36:413-20.

Li S-H, Hosseini SH, Gutekunst C-A, Hersch SM, Ferrante RJ, Li X-J. A human HAP1 homologue: cloning, expression, and interaction with huntingtin. J Biol Chem 1998; 273:19220-7.

Li X, Li S, Sharp A et al. A huntingtin-association protein enriched in brain with implications for pathology. Nature 1995; 378:398-402.

Lunkes A, Lindenberg KS, Ben-Haiem L et al. Protease acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmatic and nuclear inclusions. Molec Cell 2002; 10:259-69.

Lunkes A, Madel JL. A cellular model that recapitulates major pathogenic steps of Huntington’s disease. Hum Molec Genet 1998; 7:1355-61.

Lunyak VV, Burgess R, Prefontaine GG et al. Corepressor-dependent silencing of chromosomal regions encoding neuronal genes. Science 2002; 298:1747-52.

Luthi-Carter R, Strad A, Peters NL et al. Decreased expression of striatal signaling genes in a mouse model of Huntigton’s disease. Hum Molec Genet 2000; 9:1259-71.

MacDonald ME, Barnes G, Srinidhi J et al. Gametic but not somatic instability of CAG repeat leght in Huntigton’s disease. J Med Genet 1993; 30:982-6.

MacDonald ME, Novelletto A, Lin C et al. The Huntington’s disease candidate regions exhibits many different haplotypes. Nat Genet 1992; 1:99-103.

MacDonald ME, Vonsattel JP, Shrinidhi J et al. Evidence for the GluR6 gene associated with younger onset age of Huntington’s disease. Neurology 1999; 53:1330-2.

Masuda N, Goto J, Muruyama N, Watanabe M, Kondo I, Kanazawa I. Analysis of triplet repeats in the huntingtin gene in Japanese families affected with Huntington’s disease. J Med Genet 1995; 32:701-5.

McLaughlin BA, Spencer C, Eberwine J. CAG trinucleotide RNA repeats interacts with RNA-binding proteins. Am J Hum Genet 1996; 59:561-9.

Modregger J, DiProspero NA, Charles V, Tangle DA, Plomann M. PACSIN 1 interacts with huntingtin and is absent from synaptic varicosities in presymptomatic Huntington’s disease brains. Hum Molec Genet 2002; 11:2547-58.

Moores JN, Roy S, Nicholson DW, Staveley BE. Huntingtin interacting protein 1 can regulate neurogenesis in Drosophila. Eur J Neurosci 2008; 28:599-609.

Morrison PJ, JohnstonWP, Nevin NC. The epidemiology of Huntington’s disease in Northern Ireland. J Med Genet 1995; 32:524-30.

Muchowski PJ, Ning K, D’Souza-Schorey C, Fields S. Requirement of a intact microtubule cytoskeleton for aggression and inclusion body formation by a mutant huntingtin fragment. Proc Nat Acad Sci USA 2002; 99:727-32.

Mugat B, Parmentier ML, Bonneaud N, Chan HY, Maschat F. Protective role of Engrailed in a Drosophila model of Huntington’s disease. Hum Mol Genet 2008; 17:3601-16.

Myers RH, Cupples LA, Schoenfeld M et al. Maternal factor in onset of Huntington’s disease. Am J Hum Genet 1985; 37:511-23.

Myers RH, Goldman D, Bird ED et al. Maternal transmission in Huntigtons’s disease. Lancet 1983; 1:208-10.

Myers RH, Madden JJ, Teague JL, Falek A. Factor related to onset age of Huntigton’s disease. Am J Hum Genet 1982; 34:481-8.

Naraim Y, Wyttenbach A, Rankin J, Furlong RA, Rubinsztein DC. A molecular investigation of true dominance in Huntington’s disease. J Med Genet 1999; 36:739-46.

Nasir J, Duan K, Nichol K et al. Gene structure and map location of the murine homolog of the Huntington-association protein, Hap1. Mammalian Genome 1998; 9:565-70.

Nasir J, Lafuente M, Duan K et al. Human huntingtin-associated protein (HAP-1) gene: genomic organisation and an intragenic polymorphism. Gene 2000; 254:181-7.

Nguyen T, Hamby A, Massa SM. Clioquinol down-regulates mutant huntingtin expression in vitro and mitigates pathology in a Huntington’s disease mouse model. Proc Natl Acad Sci USA 2005; 102:11840-5.

Ordway JM, Tallaksen-Greene S, Gutekunst CA et al. Ectopically expressed CAG repeats cause intracellular inclusions and progressive late onset neurological phenotype in the mouse. Cell 1997; 91:753-63.

Palo J, Somer H, Ikonen E, Karila L, Peltonen L. Low prevalence of Huntigton’s disease in Finland. Lancet 1987; 1:805-6.

Panov AV, Gutekunst CA, Leavitt BR et al. Early mitochondrial calcium defects in Huntigton’s disease are a direct effect of polyglutamines. Nat Neurosci 2002; 5:731-6.

Peel AL, Rao RV, Cottrell BA et al. Double-strdended RNA-dependent protein kinase, PKR, binds preferentially to Huntigton’s disease (HD) transcripts and is activated in HD tissue. Hum Molec Genet 2001; 10:1531-8.

Petersen A, Larsen KE, Behr GG et al. Expanded CAG repeats in exon 1 of the Huntigton’s disease gene stimulates dopamine-mediated striatal neuron autophagy and degeneration. Hum Molec Genet 2001; 10:1243-54.

Portera-Cailliau C, Hedreen JC, Prince DL, Koliatson VE. Evidence for apoptopic cell death in Huntington disease and excitotoxic animal models. J Neurosci 1995; 15:3775-87.

Ranen NG, Stine OC, Abbott MH et al. Anticipation and instability of IT-15 (CAG)n repeats in parent-offspring pairs with Huntigton disease. Am J Hum Genet 1995; 57:593-602.

Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autopathy. Hum Molec Genet 2002; 11:1107-17.

Ravikumar B, Vacher C, Berger Z et al. Inhibition of mTOR induces autopathy and reduces toxicity of poplyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 2004; 36:585-96.

Read AP. Huntington’s disease: testing the test. Nat Genet 1993; 4:329-30.

Reik W. Genomic impriminting: a possible mechanism for the parental origin effect in Huntington’s chorea. J Med Genet 1988; 25:805-8.

Reik W. Genomic imprinting and genetic disorders in man. Trends Genet 1989; 5:331-6.

Reik W, Collick A, Norris ML, Barton SC, Surani MA. Genomic impriting determines methylation of parental alleles in transgenic mice. Nature 1987; 328:248-51.

Reiner A, Albin RL, Anderson KD et al. Differential loss stritatal projection in Huntigton disease. Proc Nat Acad Sci USA 1998; 85:5733-7.

Richfield EK, Herkenham M. Selective vulnerability in Huntigton’s disease: preferential loss of cannabinoid receptors in lateral globus pallidus. Ann Neurol 1994; 36:577-84.

Ridley RM, Frith CD, Crown TJ, Connelly PM. Anticipation in Huntington’s disease is inherited through the male line but may orginate in the female. J Med Genet 1988; 25:589-95.

Ridley RM, Frith CD, Farrer LA, Conneally PM. Patterns of inheritance of the symptoms of Huntington’s disease suggestive of an effect of genomic imprinting. J Med Genet 1991; 28; 224-31.

Rosenblatt A, Brinkman RR, Liang KY et al. Familial influences on age of onset among siblings with Huntington disease. Am J Med Genet 2001; 105:399-403.

Rubinsztein DC, Leggo J, Coles R et al. Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats. Am J Hum Genet 1996; 59:16-22.

Sabl JF, Laird CD. Epigene conversion: a proposal with implications for gene mapping in humans. Am J Hum Genet 1992; 50:1171-7.

Sánchez I, Mahlke C, Yuan J. Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 2003; 421:373-9.

Sapienza Peterson AC, Rossant J, Balling R. Degree of methylation of transgenes is independent of gamete of origin. Nature 1987; 328:251-4.

Sapp E, Ge P, Aizawa H et al. Evidence for a preferential loss of enkephalin immunoreactivity in the external globus pallidus in low grade Huntington’s disease using high resolution images analysis. Neuroscience 1995; 64:397-404.

Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 2009; 16:46-56.

Saudou F, Finkbeiner S, Devys D, Greenberg ME. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 1998; 95:55-66.

Scherzinger E, Sittler A, Schweiger K et al. Self-assembly of polyglutamine-containing huntingtin into amyloid-like fibrils: implications for Huntington’s disease pathology. Proc Nat Acad Sci USA 1999; 96:4604-9.

Schilling G, Becher M, Sharp A et al. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Molec Genet 1999; 8:397-407.

Schoenherr CJ, Anderson DJ. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 1995; 267:1360-3.

Schwarcz R, Okuno E, White R, Bird E, Whetsell W Jr. 3-Hydroxyanthranilate oxygenase activity is increased in the brains of Huntington disease victims. Proc Nat Acad Sci USA 1988; 85:4079-81.

Seki N, Muramatsu M, Sugano S et al. Cloning, expression analysis, and chromosomal localization of HIP1R, an isolog of huntingtin interactin protein (HIP1). J Hum Genet 1998; 43:268-71.

Simpson S, Johnston A. The prevalence and patterns of care if Huntington’s chorea in Grampian. Brit J Psychiat 1989; 155:799-804.

Singaraja R, Hadano S, Metzler M et al. HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. Hum Molec Genet 2002; 11:2815-28.

Sittler A, Lurz R, Lueder G et al. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet 2001; 10:1307-15.

Snell R, MacMillan J, Cheadle J et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat Genet 1993; 4:393-7.

Southwell AL, Ko J, Patterson PH. Intrabody gene therapy ameliorates motor, cognitive, and neuropathological symptoms in multiple mouse models of Huntington’s disease. J Neurosci 2009; 29:13589-602.

Suzuki M, Mizutani-Koseki Y, Fujimura Y et al. Involvement of the Polycomb-group gene Ring1B in the specification of the anterior-posterior axis in mice. Development 2002; 129:4171-83.

Szebenyi G, Morfini G, Babcock A et al. Neuropathogenic forms of huntingtin and androgen receptor inhibit fast axonal transport. Neuron 2003; 40:41-52.

Tanaka M, Machida Y, Niu S et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 2004; 10:148-54.

Tang TS, Guo C, Wang H, Chen X, Bezprozvanny I. Neuroprotective effects of inositol 1,4,5-trisphosphate receptor C-terminal fragment in a Huntington’s disease mouse model. J Neurosci 2009; 29:1257-66.

The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72:971-83.

Thiel G, Lietz M, Cramer M. Biological activity and modulator structure of RE-1-silencing transcription factor (REST), a repressor of neuronal genes. J Biol Chem 1998; 273:26891-9.

Trettel F, Rigamonti D, Hilditch-Maguire P et al. Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum Molec Genet 2000; 9:2799-809.

Trottier Y, Biancalana V, Mandel J. Instability of CAG repeats in Huntington’s disease: relation to parental transmission and age of onset. J Med Genet 1994; 31:377-82.

Trottier Y, Devys D, Imbert G et al. Cellular localization of the Huntington’s disease protein and discrimination of the normal and mutated form. Nat Genet 1995; 10:104-10.

Tuckfield A, Clouston DR, Wilanowski TM, Zhao L-L, Cunningham JM, Jane SM. Binding of the RING Polycomb proteins to specific target genes in complex with the grainyhead-like family of developmental transcription factors. Molec Cell Biol 2002; 22:1936-46.

van Dellen A, Blakemore C, Deacon R, York D, Hannan A. Delaying the onset of Huntington’s in mice: this unremitting disease develops later in animals stimulated by their environment. Nature 2000; 404:721-2.

van Dijk J, van der Velde E, Ross R, Bruyn G. Juvenile Huntington disease. Hum Genet 1986; 73:235-9.

Voncken JW, Roelen BAJ, Roefs M et al. Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition. Proc Nat Acad Sci USA 2003; 100:2468-73.

Waelter S, Scherzinger E, Hasenbank R et al. The huntingtin interacting protein HIP1 is a clathrin and alpha-adaptin-binding protein involved in receptor-mediated endocytosis. Hum Molec Genet 2001; 10:1807-17.

Walker DA, Harper PS, Wells CEC, Tyler A, Davies K, Newcombe RG. Huntington’s chorea in South Wales: a genetic and epidemiological study. Clin Genet 1981; 19:213-21.

Wang H, Wang L, Erdjument-Bromage H et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 2004; 431:873-8.

Wanker E, Rovira C, Scherzinger E et al. HIP-I: a huntingtin interacting protein isolated by the yeast two-hybrid system. Hum Molec Genet 1997; 6:487-95.

Warby SC, Montpetit A, Hayden AR et al. CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup. Am J Hum Genet 2009; 84:351-66.

Wedemeyer N, Peoples R, Himmelbauer H, Lehrach H, Francke U, Wanker E. Localization of the human HIP1 gene close to the elastin (ELN) locus on 7q11. 23. Genomics 1997; 46:313-5.

Went LN, Vegter-van der Vlis M, Bruyn GW. Parental transmission in Huntington’s disease. Lancet 1984; i:1100-2.

Willingham S, Outeiro TF, DeVit MJ, Lindquist SL, Muchowski PJ. Yeast genes that enhance the toxicity of mutants hungting fragment or alpha-synuclein. Science 2003; 302:1769-72.

Wright H, Still C, Abramson R. Huntington’s disease in black kindreds in South Carolina. Arch Neurol 1981; 38:412-4.

Yamamoto A, Lucas J, Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 2000; 101:57-66.

Yang SH, Cheng PH, Banta H et al. Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 2008; 453:921-4.

Yang W, Dunlap J, Andrews R, Wetzel R. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum Molec Genet 2002; 11:2905-17.

Yoon S, Dubeau L, de Young M, Wexler N, Arnheim N. Huntington disease expansion mutations in humans can occur before meiosis is completed. Proc Nat Acad Sci USA 2003; 100:8834-8.

Yu Z, Li S, Nguyen H, Li X. Huntingtin inclusions do not deplete polyglutamine-containing transcription factors in HD mice. Hum Molec Genet 2002; 11:905-14.

Zeitlin S, Liu J, Chapman D, Papaioannou V, Efstratiadis A. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nat Genet 1995; 11:155-63.

Zuccato C, Tartari M, Crotti A et al. Huntigton interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 2003; 35:76-83.

Zuhlke C, Riess O, Bockel B. Lange H, Thies U. Mitotic stability and meiotic variability of the (CAG)n repeat in the Huntington disease gene. Hum Molec Genet 1993; 2:2063-7.

A B C D E F G H I K L M N O P R S T U V W X Z