Gene References

A B C D E F G H I K L M N O P R S T U V W X Z

MAOA (monoamine oxidase A)

Beaver KM, DeLisi M, Vaughn MG, Barnes JC. Monoamine oxidase A genotype is associated with gang membership and weapon use. Compr Psychiatry 2010; 51:130-4.

Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 1993; 262:578-80.

Caporaso N, Gu F, Chatterjee N et al. Genome-wide and candidate gene association study of cigarette smoking behaviors. PLoS One 2009. doi:10. 1371/journal. pone. 0004653.

Caspi A, McClay J, Moffitt TE et al. Role of genotype in the cycle of violence in maltreated children. Science 2002; 297:851-4.

Cohen IL, Liu X, Schutz C et al. Association of autism severity with a monoamine oxidase A functional polymorphism. Clin Genet 2003; 64:190-7.

Comasco E, Sylvén SM, Papadopoulos FC, Sundström-Poromaa I, Oreland L, Skalkidou A. Postpartum depression symptoms: a case-control study on monoaminergic functional polymorphisms and environmental stressors. Psychiatr Genet 2011; 21:19-28.

Fan M, Liu B, Jiang T, Jiang X, Zhao H, Zhang J. Meta-analysis of the association between the monoamine oxidase-A gene and mood disorders. Psychiatr Genet 2010; 20:1-7.

Huizinga D, Haberstick BC, Smolen A et al. Childhood maltreatment, subsequent antisocial behavior, and the role of monoamine oxidase A genotype. Biol Psychiatry 2006; 60:677-83.

Kersting A, Kroker K, Horstmann J et al. Association of MAO-A variant with complicated grief in major depression. Neuropsychobiology 2007; 56:191-6.

Kim JJ, Shih JC, Chen K et al. Selective enhancement of emotional, but not motor, learning in monoamine oxidase A-deficient mice. Proc Natl Acad Sci USA 1997; 94:5929-33.

Manor I, Tyano S, Mel E et al. Family-based and association studies of monoamine oxidase A and attention deficit hyperactivity disorder (ADHD): preferential transmission of the long promoter-region repeat and its association with impaired performance on a continuous performance test (TOVA). Mol Psychiatry 2002; 7:626-32.

Meyer-Lindenberg A, Buckholtz JW, Kolachana B et al. Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc Natl Acad Sci USA 2006; 103:6269-74.

Nakamura K, Sekine Y, Takei N et al. An association study of monoamine oxidase A (MAOA) gene polymorphism in methamphetamine psychosis. Neurosci Lett 2009; 455:120-3.

Passamonti L, Fera F, Magariello A et al. Monoamine oxidase-a genetic variations influence brain activity associated with inhibitory control: new insight into the neural correlates of impulsivity. Biol Psychiatry 2006; 59:334-40.

Peters EJ, Slager SL, McGrath PJ, Knowles JA, Hamilton SP. Investigation of serotonin-related genes in antidepressant response. Mol Psychiatry 2004; 9:879-89.

Sabol SZ, Hu S, Hamer D. A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 1998; 103:273-9.

Tikkanen R, Sjöberg RL, Ducci F et al. Effects of MAOA-genotype, alcohol consumption, and aging on violent behavior. Alcohol Clin Exp Res 2009; 33:428-34.

Tu HP, Ko AM, Wang SJ et al. Monoamine oxidase A gene polymorphisms and enzyme activity associated with risk of gout in Taiwan aborigines. Hum Genet 2010; 127:223-9.

Tzeng DS, Chien CC, Lung FW, Yang CY. MAOA gene polymorphisms and response to mirtazapine in major depression. Hum Psychopharmacol 2009; 24:293-300.

Veenstra-VanderWeele J, Anderson GM, Cook EH Jr. Pharmacogenetics and the serotonin system: initial studies and future directions. Eur J Pharmacol 2000; 410:165-81.

Viemari JC, Hilaire G. Monoamine oxidase A-deficiency and noradrenergic respiratory regulations in neonatal mice. Neurosci Lett 2003; 340:221-4.

MAOB (monoamine oxidase B)

Checkoway H, Franklin GM, Costa-Mallen P et al. A genetic polymorphism of MAO-B modifies the association of cigarette smoking and Parkinson’s disease. Neurology 1998; 50:1458-61.

Costa-Mallen P, Costa LG, Smith-Weller T et al. Genetic polymorphism of dopamine D2 receptors in Parkinson’s disease and interactions with cigarette smoking and MAO-B intron 13 polymorphism. J Neurol Neurosurg Psychiatry 2000; 69:535-7.

Fowler JS, Volkow ND, Wang GJ et al. Inhibition of monoamine oxidase B in the brains of smokers. Nature 1996; 379:733-6.

Goudreau JL, Maraganore DM, Farrer MJ et al. Case-control study of dopamine transporter-1, monoamine oxidase-B, and catechol-O-methyl transferase polymorphisms in Parkinson’s disease. Mov Disord 2002; 17:1305-11.

Koukouritaki SB, Hines RN. Flavin-containing monooxygenase genetic polymorphism: impact on chemical metabolism and drug development. Pharmacogenomics 2005; 6:807-22.

Naoi M, Maruyama W. Functional mechanism of neuroprotection by inhibitors of type B monoamine oxidase in Parkinson’s disease. Expert Rev Neurother 2009; 9:1233-50.

Preskorn SH. Pharmacogenomics, informatics, and individual drug therapy in psychiatry: past, present and future. J Psychopharmacol 2006; 20:85-94.

Tadić A, Rujescu D, Müller MJ et al. A monoamine oxidase B gene variant and short-term antidepressant treatment response. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:1370-7.

Wu RM, Cheng CW, Chen KH et al. The COMT L allele modifies the association between MAOB polymorphism and PD in Taiwanese. Neurology 2001; 56:375-82.

MAPK7 (mitogen-activated protein kinase 7)

Bhattacharya S, Macdonald ST, Farthing CR. Molecular mechanisms controlling the coupled development of myocardium and coronary vasculature. Clin Sci 2006; 111:35-46.

Edvardsen H, Brunsvig PF, Solvang H et al. SNPs in genes coding for ROS metabolism and signalling in association with docetaxel clearance. Pharmacogenomics J 2010; 10:513-23.

Woo CH, Shishido T, McClain C et al. Extracellular signal-regulated kinase 5 SUMOylation antagonizes shear stress-induced antiinflammatory response and endothelial nitric oxide synthase expression in endothelial cells. Circ Res 2008; 102:538-45.

Zhou C, Nitschke AM, Xiong W et al. Proteomic analysis of tumor necrosis factor-alpha resistant human breast cancer cells reveals a MEK5/Erk5-mediated epithelial-mesenchymal transition phenotype. Breast Cancer Res 2008; 10:105.

MAPT (microtubule-associated protein tau)

Allen B, Ingram E, Takao M et al. Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 2002; 22:9340-51.

Alonso AC, Grundke-Iqbal I, Iqbal K. Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubles. Nat Med 1996; 2:783-7.

Andreadis A, Brown WM, Kosik KS. Structure and novel exons of the human tau gene. Biochemistry 1992; 31:10626-33.

Arendash GW, Lewis J, Leighty RE et al. Multi-metric behavioral comparison of APPsw and P301L models for Alzheimer’s disease: linkage of poorer cognitive performance to tau pathology in forebrain. Brain Res 2004; 1012:29-41.

Arima K, Kowalska A, Hasegawa M et al. Two brothers with frontotemporal dementia and parkinsonism with an N279K mutation of the tau gene. Neurology 2000; 54:1787-95.

Baker M, Litvan I, Houlden H et al. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet 1999; 8:711-5.

Barghorn S, Davies P, Mandelkow E. Tau paired helical filaments from Alzheimer’s disease brain and assembled in vitro are based on beta-structure in the core domain. Biochemistry 2004; 43:1694-703.

Bellucci A, Westwood AJ, Ingram E, Casamenti F, Goedert M, Spillantini MG. Induction of inflammatory mediators and microglial activation in mice transgenic for mutant human P301S tau protein. Am J Pathol 2004; 165:1643-52.

Berriman J, Serpell LC, Oberg KA, Fink AL, Goedert M, Crowther RA. Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-beta structure. Proc Natl Acad Sci USA 2003; 100:9034-8.

Brown J, Lantos PL, Roques P, Fidani L, Rossor MN. Familial dementia with swollen achromatic neurons and corticobasal inclusion bodies: a clinical and pathological study. J Neurol Sci 1996; 135:21-30.

Cheshire WP, Tsuboi Y, Wszolek ZK. Physiologic assessment of automatic dysfunction in pallidopontonigral degeneration with N279K mutation in the tau gene on chromosome 17. Auton Neurosci 2002; 102:71-7.

Clark LN, Poorkaj P, Wszolek Z et al. Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc Nat Acad Sci USA 1998; 95:13103-7.

Connell JW, Gibb GM, Betts JC et al. Effects of FTDP-17 mutations on the in vitro phosphorylation of tau by glycogen synthase kinase 3-beta identified by mass spectrometry demonstrate certain mutations exert long-range conformational changes. FEBS 2001; 493:40-4.

Conrad C, Andreadis A, Trajanowski JQ et al. Genetic evidence for the involvement of tau in progressive supranuclear palsy. Ann Neurol 1997; 41:277-81.

Conrad C, Vianna C, Freeman M, Davies P. A polymorphic gene nested within an intron of the tau gene: implications for Alzheimer’s disease. Proc Nat Acad Sci USA 2002; 99:7751-6.

Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP. Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci 2001; 114:1179-87.

Delacourte A, Sergeant N, Champain D et al. Nonoverlapping but synergetic tau and APP pathologies in sporadic Alzheimer’s disease. Neurology 2002; 59:398-407.

Delisle MB, Murrell JR, Richardson R et al. A mutation at codon 279 (N279K) in exon 10 of the tau gene causes a tauopathy with dementia and supranuclear palsy. Acta Neuropath 1999; 98:62-77.

Den Dunen JT, Antonarakis SE. Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat 2000; 15:7-12.

Donlon TA, Harris P, Neve RL. Localization of microtubule-associated protein tau (MTBT1) to chromosome 17q21. Cytogenet Cell Genet 1987; 46:607.

Forman MS, Lee VM, Trojanowski JQ. New insights into genetic and molecular mechanisms of brain degeneration in tauopathies. J Chem Neuroanat 2000; 20:225-44.

Gamblin TC, Chen F, Zambrano A et al. Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci USA 2003; 100:10032-7.

Ganzer S, Artl S, Schoder V et al. CSF-tau, CSF-Abeta1-42, APOE-genotype and clinical parameters in the diagnosis of Alzheimer’s disease: combination of CSF-tau and MMSE yields highest sensitivity and specificity. J Neural Transm 2003; 110:1149-60.

Giasson BI, Forman MS, Higuchi M et al. Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 2003; 300:636-40.

Goedert M, Crowther RA, Spillantini MG. Tau mutations cause frontotemporal dementias. Neuron 1998; 21:955-8.

Goedert M, Spillantini MG, Crowther RA et al. Tau gene mutation in familial progressive subcortical gliosis. Nat Medicine 1999; 5:454-7.

Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 1989; 8:393-9.

Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer’s disease: identification as the microtubule-associated protein tau. Proc Nat Acad Sci USA 1988; 85:4051-5.

Gómez de Barreda E, Pérez M, Gómez Ramos P et al. Tau-knockout mice show reduced GSK3-induced hippocampal degeneration and learning deficits. Neurobiol Dis 2010; 37:622-9.

Goode BL, Chau M, Denis PE, Feinstein SC. Structural and functional differences between 3-repeat and 4-repeat tau isoforms: implications for normal tau function and the onset of neurodegenerative disease. J Biol Chem 2000; 275:38182-9.

Götz J, Probst A, Spillantini MG et. Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO J 1995; 14:1304-13.

Harada A, Oguchi K, Okabe S et al. Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 1994; 369:488-91.

Hayashi S, Toyoshima Y, Hasegawa M et al. Late-onset frontotemporal dementia with a novel exon 1 (Arg5His) tau gene mutation. Ann Neurol 2002; 51:525-30.

Heutink P, Stevens M, Rizzu P et al. Hereditary frontotemporal dementia is linked to chromosome 17q21-q22: a genetic and clinicopathological study of three Dutch families. Ann Neurol 1997; 41:150-9.

Higuchi M, Lee VMY, Trojanowski JQ. Tau and axonopathy in neurodegenerative disorders. NeuroMolec Med 2002; 2:131-50.

Hogg M, Grujic ZM, Baker M et al. The L266V tau mutation is associated with frontotemporal dementia and Pick-like 3R and 4R tauopathy. Acta Neuropathol 2003; 106:323-36.

Horiguchi T, Uryu K, Giasson BI et al. Nitration of tau protein is linked to neurodegeneration in tauopathies. Am J Pathol 2003; 163:1021-31.

Hua Q, He RQ. Tau could protect DNA double helix structure. Biochim Biophys Acta 2003; 1645:205-11.

Hughes A, Mann D, Pickering-Brown S. Tau haplotype frequency in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Exp Neurol 2003; 181:12-6.

Hutton M. Molecular genetics of chromsome 17 tauopathies. Ann NY Acad Sci 2000; 920:63-73.

Hutton M. Missense and splice site mutations in tau associated with FTDP-17: multiple pathogenic mechanism. Neurology 2001; 56(Suppl 4):21-5.

Hutton M, Lendon CL, Rizzu P et al. Association of missense and 5’-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998; 393:702-5.

Iijima M, Tariba T, Poorkaj P et al. A distinct familial presenile dementia with a novel missense mutation in the tau gene. Neuroreport 1999; 10:497-501.

Ikeda H, Taira N, Hara F et al. The estrogen receptor influences microtubule-associated protein tau (MAPT) expression and the selective estrogen receptor inhibitor fulvestrant downregulates MAPT and increases the sensitivity to taxane in breast cancer cells. Breast Cancer Res 2010; 12:43.

Ingram EM, Spillantini MG. Tau gene mutations: dissecting the pathogenesis of FTDP-17. Trends Mol Med 2002; 8:555-62.

Ishihara T, Hong M, Zhang B et al. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 1999; 24:751-62.

Jimeno A, Hallur G, Chan A et al. Development of two novel benzoylphenylurea sulfur analogues and evidence that the microtubule-associated protein tau is predictive of their activity in pancreatic cancer. Mol Cancer Ther 2007; 6:1509-16.

Keck S, Nitsch R, Grune T, Ullrich O. Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J Neurochem 2003; 85:115-22.

Kelleher I, Garwood C, Hanger DP, Anderton BH, Noble W. Kinase activities increase during the development of tauopathy in htau mice. J Neurochem 2007; 103:2256-67.

Kobayashi Y, Ota S, Tanaka K et al. A novel L266V mutation of the tau gene causes frontotemporal dementia with a unique tau pathology. Ann Neurol 2003:133-7.

Kowalska A, Jamrozik Z, Kwiecinski H. Progressive supranuclear palsy-parkinsonian disorder with tau pathology. Folia Neuropathol 2004; 42:119-23.

Krishnamurthy RK, Johnson GH. Mutant (R406W) human tau is hyperphosphorylated and does not efficiently bind microtubules in a neuronal cortical cell model. J Biol Chem 2004; 279:7893-900.

Kwok JB, Loy CT, Hamilton G et al. Glycogen synthase kinase-3beta and tau genes interact in Alzheimer’s disease. Ann Neurol 2008; 64:446-54.

Kwok JB, Teber ET, Loy C, Hallup M et al. Tau haplotypes regulate transcription and are associated with Parkinson’s disease. Tau haplotypes regulate transcription and are associated with Parkinson’s disease. Ann Neurol 2004; 55:329-34.

Kyoung Pyo H, Lovati E, Pasinetti GM, Ksiezak-Reding H. Phosphorylation of tau at THR212 and SER214 in human neuronal and glial cultures: the role of AKT. Neuroscience 2004; 127:649-58.

Lee G, Thangevel R, Sharma VM et al. Phosphorylation of tau by fyn: implications for Alzheimer’s disease. J Neurosci 2004; 24:2304-12.

Lee VM-Y. Tauists and βaptists united – well almost. Science 2001; 293:1446-7.

Levchenko A, Robitaille Y, Strong MJ, Rouleau GA. TAU mutations are not a predominant causes of frontotemporal dementia in Canadian patients. Can J Neurol Sci 2004; 31:363-7.

Li G, Yin H, Kuret J. Casein kinesin 1 delta phosphorylates tau and its binding to microtubules. J Biol Chem 2004; 279:15938-45.

Lin WL, Lewis J, Yen SH, Hutton M, Dickson DW. Filamentous tau in oligodendrocytes and astrocytes of transgenic mice expressing the human tau isoform with the P301L mutation. Am J Pathol 2003; 162:213-8.

Lippa CF, Zhukareva V, Kawarai T et al. Frontotemporal dementia with novel tau pathology and glu342val tau mutation. Ann Neurol 2000; 48:850-8.

Litvan I, Baker M, Hutton M. Tau genotype: no effect on onset, symptom severity, or survival in progressive supranuclear palsy. Neurology 2001; 57:138-40.

Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Nat Acad Sci USA 2004; 101:10804-9.

Lossos A, Reches A, Gal A et al. Frontotemporal dementia and parkinsonism with the P301S tau gene mutation in a Jewish family. J Neurol 2003; 250:733-40.

Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 1999; 399:784-8.

Luo MH, Tse SW, Memmott J, Andreadis A. Novel isoforms of tau that lack the microtubule-binding domain. J Neurochem 2004; 90:340-51.

Macknin JB, Higuchi M, Lee VM, Trojanowski JQ, Doty RL. Olfactory dysfunction occurs in transgenic mice overexpressing human tau protein. Brain Res 2004; 1000:174-8.

Martin ER, Scott WK, Nance MA et al. Association of single-nucleotide polymorphisms of the tau gene with late-onset Parkinson disease. JAMA 2001; 286:2245-50.

Miao Y, Chen J, Zhang Q, Sun A. Deletion of tau attenuates heat shock-induced injury in cultured cortical neurons. J Neurosci Res 2010; 88:102-10.

Miyamoto K, Kowalska A, Hasegawa M et al. Familial frontotemporal dementia and parkinsonism with a novel mutation at an intron 10+11-splice site in the tau gene. Ann Neurol 2001; 50:117-20.

Morris HR, Osaki Y, Holton J et al. Tau exon 10 +16 mutation FTDP-17 presenting clinically as sporadic young onset PSD. Neurology 2003; 61:102-4.

Murakami T, Paitel E, Kawarabayashi T et al. Cortical neuronal and glial pathology in TgTauP301L transgenic mice: neuronal degeneration, memory disturbance, and phenotypic variation. Am J Pathol 2006; 169:1365-75.

Murrell JR, Spillantini MG, Zolo P et al. Tau gene mutation G389R causes a tauopathy with abundant pick body-like inclusions and axonal deposits. J Neuropathol Exp Neurol 1999; 58:1207-26.

Myers AJ, Kaleem M, Marlowe L et al. The H1c haplotype at the MAPT locus is associated with Alzheimer’s disease. Hum Molec Genet 2005; 14:2399-404.

Neumann M, Schulz-Schaeffer W, Crowther RA et al. Pick’s disease associated with the novel Tau gene mutation K369I. Ann Neurol 2001; 50:503-13.

Neve RL, Harris P, Kosik KS, Kurnit DM, Donlon TA. Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Molec Brain Res 1986; 1:271-80.

Nicholl DJ, Greenstone MA, Clarke CE et al. An English kindred with novel recessive taupathy and respiratory failure. Ann Neurol 2003; 54:682-6.

Noble W, Olm V, Takata K et al. Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 2003; 38:555-65.

Oliva R, Pastor P. Tau gene delN296 mutation, Parkinson’s disease, and atypical supranuclear palsy. Ann Neurol 2004; 55:448-9.

Pacheco CD, Elrick MJ, Lieberman AP. Tau deletion exacerbates the phenotype of Niemann-Pick type C mice and implicates autophagy in pathogenesis. Hum Mol Genet 2009; 18:956-65.

Panda D, Samuel JC, Massie M, Feinstein SC, Wilson L. Differential regulation of microtubule dynamics by three- and four-repeat tau: implications for the onset of neurodegenerative disease. Proc Nat Acad Sci USA 2003; 100:9548-53.

Pastor P, Pastor E, Carnero C et al. Familial atypical progressive supranuclear palsy associated with homozygosity for the delN296 mutation in the tau gene. Ann Neurol 2001; 49:263-7.

Pennanen L, Welzl H, D’Adamo P, Nitsch RM, Götz J. Accelerated extinction of conditioned taste aversion in P301L tau transgenic mice. Neurobiol Dis 2004; 15:500-9.

Pickering-Brown S, Baker M, Yen SH et al. Pick’s disease associated with mutations in the tau gene. Ann Neurol 2000; 48:859-67.

Pickering-Brown S. The tau gene locus and frontotemporal dementia. Dement Geriart Cogn Disord 2004; 17:258-60.

Polydoro M, Acker CM, Duff K, Castillo PE, Davies P. Age-dependent impairment of cognitive and synaptic function in the htau mouse model of tau pathology. J Neurosci 2009; 29:10741-9.

Poorkaj P, Bird TD, Wijsman E et al. tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 1998; 43:815-25.

Poorkaj P, Kas A, D’Souza I et al. A genomic sequence analysis of the mouse and human microtubule-associated protein tau. Mammalian Genome 2001; 12:700-12.

Poorkaj P, Muma NA, Zhukareva V et al. An R5L tau mutation in a subject with a progressive supranuclear palsy phenotype. Ann Neurol 2002; 52:511-6.

Rademakers R, Cruts M, Dermaut B et al. Tau negative frontal lobe dementia at 17q21: significant finemapping of the candidate region to a 4. 8 cM interval. Mol Psychiatry 2002; 7:1064-74.

Rademakers R, Dermaut B, Peeters K et al. Tau (MAPT) mutation arg406trp presenting clinically with Alzheimer’s disease does not share a common founder in western Europe. Hum Mutat 2003; 22:409-11.

Rapoport SI. Coupled reductions in brain oxidative phosphorylation and synaptic function can be quantified and staged in the course of Alzheimer disease. Neurotox Res 2003; 5:385-98.

Reed LA, Grabowsky TJ, Schmidt ML et al. Autosomal dominant dementia with widespread neurofibrillary tangles. Ann Neurol 1997; 42:564-72.

Rizzu P, Hinkle DA, Zhukareva V et al. DJ-1 colocalizes with tau inclusions: a link between parkinsonism and demetia. Ann Neurol 2004; 55:113-8.

Roder HM, Hutton ML. Microtubule-associated protein tau as a therapeutic target in neurodegenerative disease. Expert Opin Ther Targets 2007; 11:435-42.

Rosso SM, van Herpen E, Deelen W et al. A novel tau mutation S320F, causes a taupathy with inclusions similar to those in Pick’s disease. Ann Neurol 2002; 51:373-6.

Schindowski K, Bretteville A, Leroy K et al. Alzheimer’s disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am J Pathol 2006; 169:599-616.

Sève P, Reiman T, Isaac S et al. Protein abundance of class III beta-tubulin but not Delta2-alpha-tubulin or tau is related to paclitaxel response in carcinomas of unknown primary site. Anticancer Res 2008; 28:1161-7.

Shimura H, Miura-Shimura Y, Kosik KS. Binding of tau to heat shock protein 27 leads to decreased concentration of hyperphosphorylated tau and enhanced cell survival. J Biol Chem 2004; 279:17957-62.

Shimura H, Schwartz D, Gygi SP, Kosik KS. CHIP-Hsc70 complex ubiquitination phosphorylated tau and enhaces cell survival. J Biol Chem 2004; 279:4869-76.

Sjogren M, Englund E. Negative neurofilament light and tau immunostainig in frontotemporal dementia. Dement Geriart Cogn Disord 2004; 17:346-9.

Skipper L, Wilkes K, Toft M et al. Linkage disequilibrium and association of MAPT H1 in Parkinson disease. Am J Hum Genet 2004; 75:669-77.

Smet C, Sambo AV, Wieruszeski JM et al. The peptidyl prolyl cis/trans-isomerase Pin1 recognizes the phospho-Thr212-Pro213 site on Tau. Biochemistry 2004; 43:2032-40.

Sobrido MJ, Abu-Khalil A, Weintraub et al. Posible association of the tau H1/H1 genotype with primary progressive aphasia. Neurology 2003; 60:862-4.

Sobrido MJ, Miller BL, Havlioglu N et al. Novel tau polymorphisms, tau haplotypes, and splicing in familial and sporadic frototemporal dementia. Arch Neurol 2003; 60:698-702.

Spillantini MG, Goedert M. Tau protein pathology in neurodegenerative diseases. Trends Neurosci 1998; 21:428-33.

Spillantini MG, Murrell JR, Goedert M et al. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Nat Acad Sci USA 1998; 95:7737-41.

Spillantini MG, Yoshida H, Rizzini C et al. A novel tau mutation (N296) in familial dementia with swollen achromatic neurons and corticobasal inclusion bodies. Ann Neurol 2000; 48:939-43.

Stamer K, Vogel R, Thies E, MadelkowE, Mandelkow EM. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhaces oxidative stress. J Cell Biol 2002; 156:1051-63.

Stefanova E, Blennow K, Almkvist O, Hellström-Lindahl E, Nordberg A. Cerebral glucose metabolism, cerebrospinal fluid-beta-amyloid1-42 (CSF-Abeta42), tau and apolipoprotein E genotype in long-term rivastigmine and tacrine treated Alzheimer disease (AD) patients. Neurosci Lett 2003; 338:159-63.

Sze CI, Su M, Pugazhenthi S et al. Down-regulation of WW domain-containing oxidoreductase induces Tau phosphorylation in vitro. A potentional role in Alzheimer’s disease. J Biol Chem 2004; 279:30498-506.

Tan J, Town T, Paris D et al. Microglial activation resulting from CD40-CD40L interaction after beta-amyloid stimulation. Science 1999; 286:2352-5.

Tan J, Town T, Suo Z et al. Induction of CD40 on human endothelial cells by Alzheimer’s beta-amyloid peptides. Brain Res Bull 1999; 50:143-8.

Tanahashi H, Asada T, Tabira T. Association between tau polymorphism and male early-onset Alzheimer’s disease. Neuroreport 2004; 15:175-9.

Tanaka S, Nohara T, Iwamoto M et al. Tau expression and efficacy of paclitaxel treatment in metastatic breast cancer. Cancer Chemother Pharmacol 2009; 64:341-6.

Taniguchi T, Doe N, Matsuyama S et al. Transgenic mice expressing mutant (N279K) human tau show mutation dependent cognitive deficits without neurofibrillary tangle formation. FEBS Lett 2005; 579:5704-12.

Tatebayashi Y, Miyasaka T, Chui DH et al. Tau filament formation and associative memory déficit in aged mice expressing mutant (R406W) human tau. Proc Nat Acad Sci USA 2002; 99:13896-901.

Tobin JE, Latourelle JC, Lew MF et al. Haplotypes and gene expression implicate the MAPT region for Parkinson disease: the GenePD Study. Neurology 2008; 71:28-34.

Tsuboi Y, Baker M, Hutton M et al. Clinical and genetic studies of families with the tau N279K mutation (FTDP-17). Neurology 2002; 59:1791-3.

van Swieten JC, Rosso SM, van Herpen E, Kamphorst W, Ravid R, Heutink P. Phenotypic variation in frontotemporal dementia and parkinsonism linked to chromosome 17. Dement Geriart Cogn Disord 2004; 17:261-4.

Verpillat P, Camuzat A, Hannequin D et al. Association between the extended tau haplotype and frontotemporal dementia. Arch Neurol 2002; 59:935-9.

Vitali A, Piccini A, Borghi R et al. Soluble amyloid beta-protein in increased in frontotemporal dementia with tau gene mutations. J Alzheimer Dis 2004; 6:45-51.

Vogel G. Tau protein mutations confirmed as neuron killers. Science 1998; 280:1524-5.

Wang J, Gao QS, Wang Y, Lafyatis R, Stamm S, Adreadis A. Tau exon 10, whose missplicing causes frontotemporal dementia, is regulated by an intricated interplay of cis elements and trans factors. J Neurochem 2004; 88:1078-90.

Wang KS, Mullersman JE, Liu XF. Family-based association analysis of the MAPT gene in Parkinson disease. Appl Genet 2010; 51:509-14.

Yancopoulou D, Crowther RA, Charkrabarti L, Gydesen S, Brown JM, Spillantini MG. Tau protein in frontotemporal dementia linked to chromosome 3 (FTD-3). J Neuropathol Exp Neurol 2003; 62:878-82.

Yasuda M, Kawamata T, Komure O et al. A mutation in the microtubule-associated protein tau in pallido-nigro-luysian degeneration. Neurology 1999; 53:864-8.

Yasuda M, Yokoyama K, Nakayasu T et al. A Japanese patient with frontotemporal dementia and parkinsonism by a tau P301S mutations. Neurology 2000; 55:1224-7.

Yoshida H, Hastie CJ, McLauchland H, Cohen P, Goedert M. Phosphorylation of microtubule-association protein tau by isoforms of c-Jun N-terminal kinase (JNK). J Neurochem 2004; 90:352-8.

Yoshiyama Y, Zhang B, Bruce J, Trojanowskki JQ, Lee VM. Reduction of detryrosinated microtubules and Golgi fragmentation are linked to tau-induced degeneration in astrocytes. J Neurosci 2003; 23:10662-71.

Yu Q, Guo J, Zhou J. A minimal leght between tau exon 10 and 11 is required for correct splicing of exon 10. J Neurochem 2004; 90:164-72.

Yuan A, Kumar A, Peterhoff C, Duff K, Nixon RA. Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice. J Neurosci 2008; 28:1682-7.

Zhang B, Higuchi M, Yoshiyama Y et al. Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy. J Neurosci 2004; 24:4657-67.

Zhukareva V, Mann D, Pickering-Brown S et al. Sporadic Pick’s disease: a tauopathy characterized by a spectrum of pathological tau isoforms in gray and white matter. Ann Neurol 2002; 51:730-9.

MC1R (melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor))

Beaumont KA, Newton RA, Smit DJ, Leonard JH, Stow JL, Sturm RA. Altered cell surface expression of human MC1R variant receptor alleles associated with red hair and skin cancer risk. Hum Mol Genet 2005; 14:2145-54.

Flanagan N, Healy E, Ray A et al. Pleiotropic effects of the melanocortin 1 receptor (MC1R) gene on human pigmentation. Hum Mol Genet 2000; 9:2531-7.

Gerstenblith MR, Goldstein AM, Fargnoli MC, Peris K, Landi MT. Comprehensive evaluation of allele frequency differences of MC1R variants across populations. Hum Mutat 2007; 28:495-505.

Guedj M, Bourillon A, Combadières C et al. Variants of the MATP/SLC45A2 gene are protective for melanoma in the French population. Hum Mutat 2008; 29:1154-60.

Landi MT, Bauer J, Pfeiffer RM et al. MC1R germline variants confer risk for BRAF-mutant melanoma. Science 2006; 313:521-2.

Landi MT, Kanetsky PA, Tsang S et al. MC1R, ASIP, and DNA repair in sporadic and familial melanoma in a Mediterranean population. J Natl Cancer Inst 2005; 97:998-1007.

Liem EB, Lin CM, Suleman MI et al. Anesthetic requirement is increased in redheads. Anesthesiology 2004; 101:279-83.

Mogil JS, Ritchie J, Smith SB et al. Melanocortin-1 receptor gene variants affect pain and mu-opioid analgesia in mice and humans. J Med Genet 2005; 42:583-7.

Mogil JS, Wilson SG, Chesler EJ et al. The melanocortin-1 receptor gene mediates female-specific mechanisms of analgesia in mice and humans. Proc Natl Acad Sci USA 2003; 100:4867-72.

Nakayama K, Soemantri A, Jin F et al. Identification of novel functional variants of the melanocortin 1 receptor gene originated from Asians. Hum Genet 2006; 119:322-30.

Palmer JS, Duffy DL, Box NF et al. Melanocortin-1 receptor polymorphisms and risk of melanoma: is the association explained solely by pigmentation phenotype? Am J Hum Genet 2000; 66:176-86.

Schiöth HB, Phillips SR, Rudzish R, Birch-Machin MA, Wikberg JE, Rees JL. Loss of function mutations of the human melanocortin 1 receptor are common and are associated with red hair. Biochem Biophys Res Commun 1999; 260:488-91.

Smith R, Healy E, Siddiqui S et al. Melanocortin 1 receptor variants in an Irish population. J Invest Dermatol 1998; 111:119-22.

Strange RC, Ellison T, Ichii-Jones F et al. Cytochrome P450 CYP2D6 genotypes: association with hair colour, Breslow thickness and melanocyte stimulating hormone receptor alleles in patients with malignant melanoma. Pharmacogenetics 1999; 9:269-76.

Strange RC, Ramachandran S, Zeegers MP et al. The Multiple Sclerosis Severity Score: associations with MC1R single nucleotide polymorphisms and host response to ultraviolet radiation. Mult Scler 2010; 16:1109-16.

Valverde P, Healy E, Jackson I, Rees JL, Thody AJ. Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat Genet 1995; 11:328-30.

Valverde P, Healy E, Sikkink S et al. The Asp84Glu variant of the melanocortin 1 receptor (MC1R) is associated with melanoma. Hum Mol Genet 1996; 5:1663-6.

MEN1 (multiple endocrine neoplasia I)

Balasubramanian D, Scacheri PC. Functional studies of menin through genetic manipulation of the Men1 homolog in mice. Adv Exp Med Biol 2009; 668:105-15.

Boni R, Vortmeyer AO, Pack S et al. Somatic mutations of the MEN1 tumor suppressor gene detected in sporadic angiofibromas. J Invest Derm 1998; 111:539-40.

Darling TN, Skarulis MC, Steinberg SM, Marx SJ, Spiegel AM, Turner M. Multiple facial angiofibromas and collagenomas in patients with multiple endocrine neoplasia type 1. Arch Derm 1997; 133:853-7.

Debelenko LV, Brambilla E, Agarwal SK et al. Identification of MEN1 gene mutations in sporadic carcinoid tumors of the lung. Hum Molec Genet 1997; 6:2285-90.

Fontanière S, Duvillié B, Scharfmann R, Carreira C, Wang ZQ, Zhang CX. Tumour suppressor menin is essential for development of the pancreatic endocrine cells. J Endocrinol 2008; 199:287-98.

Heppner C, Kester MB, Agarwal SK et al. Somatic mutation of the MEN1 gene in parathyroid tumours. Nat Genet 1997; 16:375-8.

Jiao Y, Shi C, Edil BH et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 2011; 331:1199-203.

Lemos MC, Harding B, Reed AA et al. Genetic background influences embryonic lethality and the occurrence of neural tube defects in Men1 null mice: relevance to genetic modifiers. J Endocrinol 2009; 203:133-42.

Loffler KA, Biondi CA, Gartside MG et al. Lack of augmentation of tumor spectrum or severity in dual heterozygous Men1 and Rb1 knockout mice. Oncogene 2007; 26:4009-17.

Stratakis CA, Tichomirowa MA, Boikos S et al. The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes. Clin Genet 2010; 78:457-63.

Teh BT, Esapa CT, Houlston R et al. A family with isolated hyperparathyroidism segregating a missense MEN1 mutation and showing loss of the wild-type alleles in the parathyroid tumors. Am J Hum Genet 1998; 63:1544-9.

Thakker RV. Multiple endocrine neoplasia: syndromes of the twentieth century. J Clin Endocr Metab 1998; 83:2617-20.

MET (met proto-oncogene (hepatocyte growth factor receptor))

Baranzini SE, Wang J, Gibson RA et al. Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Hum Mol Genet 2009; 18:767-78.

Burdick KE, DeRosse P, Kane JM, Lencz T, Malhotra AK. Association of genetic variation in the MET proto-oncogene with schizophrenia and general cognitive ability. Am J Psychiatry 2010; 167:436-43.

Campbell DB, Sutcliffe JS, Ebert PJ et al. A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci USA 2006; 103:16834-9.

Castano R, Bossé Y, Endam LM, Filali-Mouhim A, Desrosiers M. c-MET pathway involvement in chronic rhinosinusitis: a genetic association analysis. Otolaryngol Head Neck Surg 2010; 142:665-71.

Inaba M, Sato H, Abe Y, Umemura S, Ito K, Sakai H. Expression and significance of c-met protein in papillary thyroid carcinoma. Tokai J Exp Clin Med 2002; 27:43-9.

Lindqvist M, Haglund S, Almer S et al. Identification of two novel sequence variants affecting thiopurine methyltransferase enzyme activity. Pharmacogenetics 2004; 14:261-5.

Liu W, Fu Y, Xu S et al. c-Met expression is associated with time to recurrence in patients with glioblastoma multiforme. J Clin Neurosci 2011; 18:119-21.

Nakajima M, Sawada H, Yamada Y et al. The prognostic significance of amplification and overexpression of c-met and c-erb B-2 in human gastric carcinomas. Cancer 1999; 85:1894-902.

Park WS, Dong SM, Kim SY et al. Somatic mutations in the kinase domain of the Met/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas. Cancer Res 1999; 59:307-10.

Schmidt L, Duh FM, Chen F et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 1997; 16:68-73.

Zhuang Z, Park WS, Pack S et al. Trisomy 7-harbouring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. Nat Genet 1998; 20:66-9.

MGMT (O-6-methylguanine-DNA methyltransferase)

Candiloro IL, Dobrovic A. Detection of MGMT promoter methylation in normal individuals is strongly associated with the T allele of the rs16906252 MGMT promoter single nucleotide polymorphism. Cancer Prev Res 2009; 2:862-7.

Hawkins NJ, Lee JH, Wong JJ, Kwok CT, Ward RL, Hitchins MP. MGMT methylation is associated primarily with the germline C>T SNP (rs16906252) in colorectal cancer and normal colonic mucosa. Mod Pathol 2009; 22:1588-99.

Hegi ME, Diserens AC, Gorlia T et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352:997-1003.

Hill CE, Wickliffe JK, Guerin AT et al. The L84F polymorphism in the O6-Methylguanine-DNA-Methyltransferase (MGMT) gene is associated with increased hypoxanthine phosphoribosyltransferase (HPRT) mutant frequency in lymphocytes of tobacco smokers. Pharmacogenet Genomics 2007; 17:743-53.

Idbaih A, Omuro A, Ducray F, Hoang-Xuan K. Molecular genetic markers as predictors of response to chemotherapy in gliomas. Curr Opin Oncol 2007; 19:606-11.

Jesien-Lewandowicz E, Jesionek-Kupnicka D, Zawlik I et al. High incidence of MGMT promoter methylation in primary glioblastomas without correlation with TP53 gene mutations. Cancer Genet Cytogenet 2009; 188:77-82.

Loh YH, Mitrou PN, Bowman R et al. MGMT Ile143Val polymorphism, dietary factors and the risk of breast, colorectal and prostate cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk study. DNA Repair 2010; 9:421-8.

Shen J, Terry MB, Gammon MD et al. MGMT genotype modulates the associations between cigarette smoking, dietary antioxidants and breast cancer risk. Carcinogenesis 2005; 26:2131-7.

Smith-Sørensen B, Lind GE, Skotheim RI et al. Frequent promoter hypermethylation of the O6-Methylguanine-DNA Methyltransferase (MGMT) gene in testicular cancer. Oncogene 2002; 21:8878-84.

Woolford LB, Southgate TD, Margison GP, Milsom MD, Fairbairn LJ. The P140K mutant of human O(6)-methylguanine-DNA-methyltransferase (MGMT) confers resistance in vitro and in vivo to temozolomide in combination with the novel MGMT inactivator O(6)-(4-bromothenyl)guanine. J Gene Med 2006; 8:29-34.

Zhou ZQ, Manguino D, Kewitt K et al. Spontaneous hepatocellular carcinoma is reduced in transgenic mice overexpressing human O6-methylguanine-DNA methyltransferase. Proc Natl Acad Sci USA 2001; 98:12566-71.

MLH1 (MutL homolog 1, colon cancer, nonpolyposis type 2 (E. coli))

Bapat B, Xia L, Madlensky L et al. The genetic basis of Muir-Torre syndrome includes the hMLH1 locus. Am J Hum Genet 1996; 59:736-9.

Bendardaf R, Lamlum H, Ristamäki R, Korkeila E, Syrjänen K, Pyrhönen S. Thymidylate synthase and microsatellite instability in colorectal cancer: implications for disease free survival, treatment response and survival with metastases. Acta Oncol 2008; 47:1046-53.

Borg A, Isola J, Chen J et al. Germline BRCA1 and HMLH1 mutations in a family with male and female breast carcinoma. Int J Cancer 2000; 85:796-800.

Fedier A, Schwarz VA, Walt H, Carpini RD, Haller U, Fink D. Resistance to topoisomerase poisons due to loss of DNA mismatch repair. Int J Cancer 2001; 93:571-6.

Fu Z, Regan K, Zhang L et al. Deficiencies in Chfr and Mlh1 synergistically enhance tumor susceptibility in mice. J Clin Invest 2009; 119:2714-24.

Hamilton SR, Liu B, Parsons RE et al. The molecular basis of Turcot’s syndrome. N Engl J Med 1995; 332:839-47.

Lynch HT, Fusaro RM, Roberts L, Voorhees GJ, Lynch JF. Muir-Torre syndrome in several members of a family with a variant of the Cancer Family Syndrome. Br J Dermatol 1985; 113:295-301.

Maliaka YK, Chudina AP, Belev NF, Alday P, Bochkov NP, Buerstedde JM. CpG dinucleotides in the hMSH2 and hMLH1 genes are hotspots for HNPCC mutations. Hum Genet 1996; 97:251-5.

Ostergaard JR, Sunde L, Okkels H. Neurofibromatosis von Recklinghausen type I phenotype and early onset of cancers in siblings compound heterozygous for mutations in MSH6. Am J Med Genet A 2005; 139:96-105.

Palmerini E, Fan K, Yang K et al. Piroxicam increases colon tumorigenesis and promotes apoptosis in Mlh1 +/- /Apc1638(N/+) mice. Anticancer Res 2007; 27:3807-12.

Papadopoulos N, Nicolaides NC, Wei YF et al. Mutation of a mutL homolog in hereditary colon cancer. Science 1994; 263:1625-9.

Taniguchi K, Kakinuma S, Tokairin Y et al. Mild inflammation accelerates colon carcinogenesis in Mlh1-deficient mice. Oncology 2006; 71:124-30.

Trimbath JD, Petersen GM, Erdman SH, Ferre M, Luce MC, Giardiello FM. Café-au-lait spots and early onset colorectal neoplasia: a variant of HNPCC? Fam Cancer 2001; 1:101-5.

van de Vrugt HJ, Eaton L, Hanlon Newell A et al. Embryonic lethality after combined inactivation of Fancd2 and Mlh1 in mice. Cancer Res 2009; 69:9431-8.

Worrillow LJ, Smith AG, Scott K et al. Polymorphic MLH1 and risk of cancer after methylating chemotherapy for Hodgkin lymphoma. J Med Genet 2008; 45:142-6.

Yu JH, Bigler J, Whitton J, Potter JD, Ulrich CM. Mismatch repair polymorphisms and colorectal polyps: hMLH1-93G>A variant modifies risk associated with smoking. Am J Gastroenterol 2006; 101:1313-9.

MMP2 (matrix metallopeptidase 2 (gelatinase A, 72kDa gelatinase, 72kDa type IV collagenase))

Kato T, Kure T, Chang J-H et al. Diminished corneal angiogenesis in gelatinase A-deficient mice. FEBS Lett 2001; 508:187-90.

Lambert JC, Jaffray JY, Michalski JC, Ortonne JP, Paquis V, Saunières AM. Biochemical and ultrastructural study of two familial cases of Winchester syndrome. J Genet Hum 1989; 37:231-6.

Liao YC, Lin HF, Rundek T et al. Segment-specific genetic effects on carotid intima-media thickness: the Northern Manhattan study. Stroke 2008; 39:3159-65.

Martignetti JA, Aqeel AA, Sewairi WA et al. Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nat Genet 2001; 28:261-5.

Mosig RA, Dowling O, DiFeo A et al. Loss of MMP-2 disrupts skeletal and craniofacial development and results in decreased bone mineralization, joint erosion and defects in osteoblast and osteoclast growth. Hum Mol Genet 2007; 16:1113-23.

Peng CW, Liu XL, Liu X, Li Y. Co-evolution of cancer microenvironment reveals distinctive patterns of gastric cancer invasion: laboratory evidence and clinical significance. J Transl Med 2010; 8:101.

Rouzier C, Vanatka R, Bannwarth S et al. A novel homozygous MMP2 mutation in a family with Winchester syndrome. Clin Genet 2006; 69:271-6.

Zankl A, Bonafé L, Calcaterra V, Di Rocco M, Superti-Furga A. Winchester syndrome caused by a homozygous mutation affecting the active site of matrix metalloproteinase 2. Clin Genet 2005; 67:261-6.

Zankl A, Pachman L, Poznanski A et al. Torg syndrome is caused by inactivating mutations in MMP2 and is allelic to NAO and Winchester syndrome. J Bone Miner Res 2007; 22:329-33.

Zarbock R, Hendig D, Szliska C, Kleesiek K, Götting C. Analysis of MMP2 promoter polymorphisms in patients with pseudoxanthoma elasticum. Clin Chim Acta 2010; 411:1487-90.

Zhou G, Zhai Y, Cui Y et al. Functional polymorphisms and haplotypes in the promoter of the MMP2 gene are associated with risk of nasopharyngeal carcinoma. Hum Mutat 2007; 28:1091-7.

MMP3 (matrix metalloproteinase 3 (stromelysin 1, progelatinase))

de Maat MP, Jukema JW, Ye S et al. Effect of the stromelysin-1 promoter on efficacy of pravastatin in coronary atherosclerosis and restenosis. Am J Cardiol 1999; 83:852-6.

Humphries SE, Luong LA, Talmud PJ et al. The 5A/6A polymorphism in the promoter of the stromelysin-1 (MMP-3) gene predicts progression of angiographically determined coronary artery disease in men in the LOCAT gemfibrozil study. Lopid Coronary Angiography Trial. Atherosclerosis 1998; 139:49-56.

Humphries SE, Martin S, Cooper J, Miller G. Interaction between smoking and the stromelysin-1 (MMP3) gene 5A/6A promoter polymorphism and risk of coronary heart disease in healthy men. Ann Hum Genet 2002; 66:343-52.

Kobayashi A, Naito S, Enomoto H et al. Serum levels of matrix metalloproteinase 3 (stromelysin 1) for monitoring synovitis in rheumatoid arthritis. Arch Pathol Lab Med 2007; 131:563-70.

Kucukali CI, Aydin M, Ozkok E et al. Do schizophrenia and bipolar disorders share a common disease susceptibility variant at the MMP3 gene? Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:557-61.

Li CK, Pender SL, Pickard KM et al. Impaired immunity to intestinal bacterial infection in stromelysin-1 (matrix metalloproteinase-3)-deficient mice. J Immunol 2004; 173:5171-9.

Li H, Zhang ZS, Liu W et al. Association of a functional polymorphism in the MMP-3 gene with Moyamoya Disease in the Chinese Han population. Cerebrovasc Dis 2010; 30:618-25.

Lin CC, Yang WC, Chung MY, Lee PC. Functional polymorphisms in matrix metalloproteinases-1, -3, -9 are associated with arteriovenous fistula patency in hemodialysis patients. Clin J Am Soc Nephrol 2010; 5:1805-14.

Matsuyama A, Sakai N, Ishigami M et al. Matrix metalloproteinases as novel disease markers in Takayasu arteritis. Circulation 2003; 108:1469-73.

Peng B, Cao L, Wang W et al. Polymorphisms in the promoter regions of matrix metalloproteinases 1 and 3 and cancer risk: a meta-analysis of 50 case-control studies. Mutagenesis 2010; 25:41-8.

Radisky DC, Levy DD, Littlepage LE et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 2005; 436:123-27.

Samnegård A, Silveira A, Lundman P et al. Serum matrix metalloproteinase-3 concentration is influenced by MMP-3 -1612 5A/6A promoter genotype and associated with myocardial infarction. J Intern Med 2005; 258:411-9.

Seifi M, Fallah S, Firoozrai M. Influence of genetic polymorphism in matrix metalloproteinase-3 on extent of coronary atherosclerosis and risk of coronary artery stenosis. Arch Med Res 2009; 40:600-4.

Sherva R, Ford CE, Eckfeldt JH, Davis BR, Boerwinkle E, Arnett DK. Pharmacogenetic effect of the stromelysin (MMP3) polymorphism on stroke risk in relation to antihypertensive treatment: the genetics of hypertension associated treatment study. Stroke 2011; 42:330-5.

Terashima M, Akita H, Kanazawa K et al. Stromelysin promoter 5A/6A polymorphism is associated with acute myocardial infarction. Circulation 1999; 99:2717-9.

Yamada Y, Izawa H, Ichihara S et al. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N Engl J Med 2002; 347:1916-23.

Ye S, Eriksson P, Hamsten A, Kurkinen M, Humphries SE, Henney AM. Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression. J Biol Chem 1996; 271:13055-60.

Ye S, Watts GF, Mandalia S, Humphries SE, Henney AM. Preliminary report: genetic variation in the human stromelysin promoter is associated with progression of coronary atherosclerosis. Br Heart J 1995; 73:209-15.

MSH2 (mutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli))

Andreutti-Zaugg C, Scott RJ, Iggo R. Inhibition of nonsense-mediated messenger RNA decay in clinical samples facilitates detection of human MSH2 mutations with an in vivo fusion protein assay and conventional techniques. Cancer Res 1997; 57:3288-93.

Boeckmann L, Schirmer M, Rosenberger A et al. Effect of DNA repair host factors on temozolomide or dacarbazine melanoma treatment in Caucasians. Pharmacogenet Genomics 2009; 19:760-9.

Clodfelter JE, B Gentry M, Drotschmann K. MSH2 missense mutations alter cisplatin cytotoxicity and promote cisplatin-induced genome instability. Nucleic Acids Res 2005; 33:3323-30.

Feitsma H, Kuiper RV, Korving J, Nijman IJ, Cuppen E. Zebrafish with mutations in mismatch repair genes develop neurofibromas and other tumors. Cancer Res 2008; 68:5059-66.

Kucherlapati MH, Lee K, Nguyen AA et al. An Msh2 conditional knockout mouse for studying intestinal cancer and testing anticancer agents. Gastroenterology 2010; 138:993-1002.

Liu B, Parsons R, Papadopoulos N et al. Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients. Nat Med 1996; 2:169-74.

Loukola A, de la Chapelle A, Aaltonen LA. Strategies for screening for hereditary non-polyposis colorectal cancer. J Med Genet 1999; 36:819-22.

Mangold E, Pagenstecher C, Leister M et al. A genotype-phenotype correlation in HNPCC: strong predominance of msh2 mutations in 41 patients with Muir-Torre syndrome. J Med Genet 2004; 41:567-72.

Martinez P, Siegl-Cachedenier I, Flores JM, Blasco MA. MSH2 deficiency abolishes the anticancer and pro-aging activity of short telomeres. Aging Cell 2009; 8:2-17.

Russo MT, de Luca G, Casorelli I et al. Role of MUTYH and MSH2 in the control of oxidative DNA damage, genetic instability, and tumorigenesis. Cancer Res 2009; 69:4372-9.

Scott RH, Homfray T, Huxter NL et al. Familial T-cell non-Hodgkin lymphoma caused by biallelic MSH2 mutations. J Med Genet 2007; 44:83.

Wimmer K, Etzler J. Constitutional mismatch repair-deficiency syndrome: have we so far seen only the tip of an iceberg? Hum Genet 2008; 124:105-22.

Worrillow LJ, Travis LB, Smith AG et al. An intron splice acceptor polymorphism in hMSH2 and risk of leukemia after treatment with chemotherapeutic alkylating agents. Clin Cancer Res 2003; 9:3012-20.

MT-ATP6 (mitochondrially encoded ATP synthase 6)

de Meirleir L, Seneca S, Lissens W, Schoentjes E, Desprechins B. Bilateral striatal necrosis with a novel point mutation in the mitochondrial ATPase 6 gene. Pediat Neurol 1995; 13:242-6.

Holt IJ, Harding AE, Petty RK, Morgan-Hughes JA. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet 1990; 46:428-33.

Lamminen T, Majander A, Juvonen V et al. A mitochondrial mutation at nt 9101 in the ATP synthase 6 gene associated with deficient oxidative phosphorylation in a family with Leber hereditary optic neuroretinopathy. Am J Hum Genet 1995; 56:1238-40.

Shoffner JM, Fernhoff PM, Krawiecki NS et al. Subacute necrotizing encephalopathy: oxidative phosphorylation defects and the ATPase 6 point mutation. Neurology 1992; 42:2168-74.

Tatuch Y, Christodoulou J, Feigenbaum A et al. Heteroplasmic mtDNA mutation (T-to-G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high. Am J Hum Genet 1992; 50:852-8.

Ware SM, El-Hassan N, Kahler SG et al. Infantile cardiomyopathy caused by a mutation in the overlapping region of mitochondrial ATPase 6 and 8 genes. J Med Genet 2009; 46:308-14.

MT-COI (mitochondrially encoded cytochrome c oxidase I)

Brown MD, Wallace DC. Molecular basis of mitochondrial DNA disease. J Bioenerg Biomembr 1994; 26:273-89.

Gattermann N, Retzlaff S, Wang YL et al. Heteroplasmic point mutations of mitochondrial DNA affecting subunit I of cytochrome c oxidase in two patients with acquired idiopathic sideroblastic anemia. Blood 1997; 90:4961-72.

Greaves LC, Preston SL, Tadrous PJ et al. Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proc Natl Acad Sci USA 2006; 103:714-9.

Jaksch M, Hofmann S, Kleinle S et al. A systematic mutation screen of 10 nuclear and 25 mitochondrial candidate genes in 21 patients with cytochrome c oxidase (COX) deficiency shows tRNA(Ser)(UCN) mutations in a subgroup with syndromal encephalopathy. J Med Genet 1998; 35:895-900.

Pandya A, Xia XJ, Erdenetungalag R et al. Heterogenous point mutations in the mitochondrial tRNA Ser(UCN) precursor coexisting with the A1555G mutation in deaf students from Mongolia. Am J Hum Genet 1999; 65:1803-6.

Polyak K, Li Y, Zhu H et al. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 1998; 20:291-3.

Varlamov DA, Kudin AP, Vielhaber S et al. Metabolic consequences of a novel missense mutation of the mtDNA CO I gene. Hum Mol Genet 2002; 11:1797-805.

Yuan H, Qian Y, Xu Y et al. Cosegregation of the G7444A mutation in the mitochondrial COI/tRNA(Ser(UCN)) genes with the 12S rRNA A1555G mutation in a Chinese family with aminoglycoside-induced and nonsyndromic hearing loss. Am J Med Genet A 2005; 138:133-40.

MTHFR (5,10-methylenetetrahydrofolate reductase (NADPH))

Afzal S, Jensen SA, Vainer B et al. MTHFR polymorphisms and 5-FU-based adjuvant chemotherapy in colorectal cancer. Ann Oncol 2009; 20:1660-6.

Allen NC, Bagade S, McQueen MB et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the Sz Gene database. Nat Genet 2008; 40:827-34.

Beckman DR, Hoganson G, Berlow S, Gilbert EF. Pathological findings in 5,10-methylene tetrahydrofolate reductase deficiency. Birth Defects Orig Artic Ser 1987; 23:47-64.

Brody LC, Conley M, Cox C et al. A polymorphism, R653Q, in the trifunctional enzyme methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase/formyltetrahydrofolate synthetase is a maternal genetic risk factor for neural tube defects: report of the Birth Defects Research Group. Am J Hum Genet 2002; 71:1207-15.

Casas JP, Hingorani AD, Bautista LE, Sharma P. Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18000 cases and 58000 controls. Arch Neurol 2004; 61:1652-61.

Castro R, Rivera I, Ravasco P et al. 5,10-Methylenetetrahydrofolate reductase (MTHFR) 677C→T and 1298A→C mutations are associated with DNA hypomethylation. J Med Genet 2004; 41:454-8.

Ceppa F, Fontan E, Cremades S et al. Role of pharmacogenetics in chemotherapy of colorectal cancers. Rev Med Interne 2007; 28:594-602.

Damnjanovic T, Milicevic R, Novkovic T et al. Association between the methylenetetrahydrofolate reductase polymorphisms and risk of acute lymphoblastic leukemia in Serbian children. J Pediatr Hematol Oncol 2010; 32:148-50.

de Franchis R, Buoninconti A, Mandato C et al. The C677T mutation of the 5,10-methylenetetrahydrofolate reductase gene is a moderate risk factor for spina bifida in Italy. J Med Genet 1998; 35:1009-13.

de Mattia E, Toffoli G. C677T and A1298C MTHFR polymorphisms, a challenge for antifolate and fluoropyrimidine-based therapy personalisation. Eur J Cancer 2009; 45:1333-51.

Dong X, Wu J, Liang P, Li J, Yuan L, Liu X. Methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and gastric cancer: a meta-analysis. Arch Med Res 2010; 41:125-33.

Etienne-Grimaldi MC, Milano G, Maindrault-Goebel F et al. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms and FOLFOX response in colorectal cancer patients. Br J Clin Pharmacol 2010; 69:58-66.

Fan AZ, Yesupriya A, Chang MH et al. Gene polymorphisms in association with emerging cardiovascular risk markers in adult women. BMC Med Genet 2010; 11:6.

Fong CS, Shyu HY, Shieh JC et al. Association of MTHFR, MTR, and MTRR polymorphisms with Parkinson’s disease among ethnic Chinese in Taiwan. Clin Chim Acta 2011; 412:332-8.

Frayling TM. Commentary: Genetic association studies see light at the end of the tunnel. Int J Epidemiol 2008; 37:133-5.

Gemmati D, Ongaro A, Tognazzo S et al. Methylenetetrahydrofolate reductase C677T and A1298C gene variants in adult non-Hodgkin’s lymphoma patients: association with toxicity and survival. Haematologica 2007; 92:478-85.

Goode EL, Potter JD, Bigler J, Ulrich CM. Methionine synthase D919G polymorphism, folate metabolism, and colorectal adenoma risk. Cancer Epidemiol Biomarkers Prev 2004; 13:157-62.

Gusella M, Frigo AC, Bolzonella C et al. Predictors of survival and toxicity in patients on adjuvant therapy with 5-fluorouracil for colorectal cancer. Br J Cancer 2009; 100:1549-57.

Harmon DL, Shields DC, Woodside JV et al. Methionine synthase D919G polymorphism is a significant but modest determinant of circulating homocysteine concentrations. Genet Epidemiol 1999; 17:298-309.

Hobbs CA, James SJ, Parsian A et al. Congenital heart defects and genetic variants in the methylenetetrahydroflate reductase gene. J Med Genet 2006; 43:162-6.

Hobbs CA, Sherman SL, Yi P et al. Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome. Am J Hum Genet 2000; 67:623-30.

Hughes LB, Beasley TM, Patel H et al. Racial or ethnic differences in allele frequencies of single-nucleotide polymorphisms in the methylenetetrahydrofolate reductase gene and their influence on response to methotrexate in rheumatoid arthritis. Ann Rheum Dis 2006; 65:1213-8.

Inoue S, Hashiguchi M, Chiyoda T, Sunami Y, Tanaka T, Mochizuki M. Pharmacogenetic study of methylenetetrahydrofolate reductase and thymidylate synthase in Japanese and assessment of ethnic and gender differences. Pharmacogenomics 2007; 8:41-7.

Isotalo PA, Wells GA, Donnelly JG. Neonatal and fetal methylenetetrahydrofolate reductase genetic polymorphisms: an examination of C677T and A1298C mutations. Am J Hum Genet 2000; 67:986-90.

Jünemann AG, von Ahsen N, Reulbach U et al. C677T variant in the methylentetrahydrofolate reductase gene is a genetic risk factor for primary open-angle glaucoma. Am J Ophthalmol 2005; 139:721-3.

Kang HJ, Oh Y, Chun SM et al. TotalPlex gene amplification using bulging primers for pharmacogenetic analysis of acute lymphoblastic leukemia. Mol Cell Probes 2008; 22:193-200.

Kelly PJ, Rosand J, Kistler JP et al. Homocysteine, MTHFR 677C→T polymorphism, and risk of ischemic stroke: results of a meta-analysis. Neurology 2002; 59:529-36.

Kelly TL, Neaga OR, Schwahn BC, Rozen R, Trasler JM. Infertility in 5,10-methylenetetrahydrofolate reductase (MTHFR)-deficient male mice is partially alleviated by lifetime dietary betaine supplementation. Biol Reprod 2005; 72:667-77.

Kishi S, Cheng C, French D et al. Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood 2007; 109:4151-7.

Klerk M, Verhoef P, Clarke R et al. MTHFR 677C→T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA 2002; 288:2023-31.

Kluijtmans LA, van den Heuvel LP, Boers GH et al. Molecular genetic analysis in mild hyperhomocysteinemia: a common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease. Am J Hum Genet 1996; 58:35-41.

Kobashi G, Yamada H, Asano T et al. Absence of association between a common mutation in the methylenetetrahydrofolate reductase gene and preeclampsia in Japanese women. Am J Med Genet 2000; 93:122-5.

Kumar J, Das SK, Sharma P, Karthikeyan G, Ramakrishnan L, Sengupta S. Homocysteine levels are associated with MTHFR A1298C polymorphism in Indian population. J Hum Genet 2005; 50:655-63.

Lewis SJ, Lawlor DA, Davey Smith G et al. The thermolabile variant of MTHFR is associated with depression in the British Women’s Heart and Health Study and a meta-analysis. Mol Psychiatry 2006; 11:352-60.

Li XM, Wei YF, Hao HL et al. Hyperhomocysteinemia and the MTHFR C677T mutation in Budd-Chiari syndrome. Am J Hematol 2002; 71:11-4.

Lu Y, Kham SK, Foo TC, Ariffin H, Quah TC, Yeoh AE. Genotyping of eight polymorphic genes encoding drug-metabolizing enzymes and transporters using a customized oligonucleotide array. Anal Biochem 2007; 360:105-13.

Lu Y, Zhao Y, Liu G et al. Factor V gene G1691A mutation, prothrombin gene G20210A mutation, and MTHFR gene C677T mutation are not risk factors for pulmonary thromboembolism in Chinese population. Thromb Res 2002; 106:7-12.

Mao R, Fan Y, Zuo L et al. Association study between methylenetetrahydrofolate reductase gene polymorphisms and Graves’ disease. Cell Biochem Funct 2010; 28:585-90.

Martin YN, Salavaggione OE, Eckloff BW, Wieben ED, Schaid DJ, Weinshilboum RM. Human methylenetetrahydrofolate reductase pharmacogenomics: gene resequencing and functional genomics. Pharmacogenet Genomics 2006; 16:265-77.

Morita H, Taguchi J, Kurihara H et al. Genetic polymorphism of 5,10-methylenetetrahydrofolate reductase (MTHFR) as a risk factor for coronary artery disease. Circulation 1997; 95:2032-6.

Muntjewerff JW, Hoogendoorn ML, Kahn RS et al. Hyperhomocysteinemia, methylenetetrahydrofolate reductase 677TT genotype, and the risk for schizophrenia: a Dutch population based case-control study. Am J Med Genet B Neuropsychiatr Genet 2005; 135:69-72.

Muntjewerff JW, Kahn RS, Blom HJ, den Heijer M. Homocysteine, methylenetetrahydrofolate reductase and risk of schizophrenia: a meta-analysis. Mol Psychiatry 2006; 11:143-9.

Oterino A, Valle N, Bravo Y et al. MTHFR T677 homozygosis influences the presence of aura in migraineurs. Cephalalgia 2004; 24:491-4.

Ou CY, Stevenson RE, Brown VK et al. 5,10 Methylenetetrahydrofolate reductase genetic polymorphism as a risk factor for neural tube defects. Am J Med Genet 1996; 63:610-4.

Parmeggiani F, Costagliola C, Gemmati D et al. Predictive role of coagulation-balance gene polymorphisms in the efficacy of photodynamic therapy with verteporfin for classic choroidal neovascularization secondary to age-related macular degeneration. Pharmacogenet Genomics 2007; 17:1039-46.

Paz MF, Avila S, Fraga MF et al. Germ-line variants in methyl-group metabolism genes and susceptibility to DNA methylation in normal tissues and human primary tumors. Cancer Res 2002; 62:4519-24.

Pegoraro RJ, Chikosi A, Rom L, Roberts C, Moodley J. Methylenetetrahydrofolate reductase gene polymorphisms in black South Africans and the association with preeclampsia. Acta Obstet Gynecol Scand 2004; 83:449-54.

Przekop PR Jr, Tulgan H, Przekop AA, Glantz M. Adverse drug reaction to methotrexate: pharmacogenetic origin. J Am Osteopath Assoc 2006; 106:706-7.

Qian X, Lu Z, Tan M, Liu H, Lu D. A meta-analysis of association between C677T polymorphism in the methylenetetrahydrofolate reductase gene and hypertension. Eur J Hum Genet 2007; 15:1239-45.

Ranganathan P, Culverhouse R, Marsh S et al. Methotrexate (MTX) pathway gene polymorphisms and their effects on MTX toxicity in Caucasian and African American patients with rheumatoid arthritis. J Rheumatol 2008; 35:572-9.

Roffman JL, Weiss AP, Purcell S et al. Contribution of methylenetetrahydrofolate reductase (MTHFR) polymorphisms to negative symptoms in schizophrenia. Biol Psychiatry 2008; 63:42-8.

Schwartz SM, Siscovick DS, Malinow MR et al. Myocardial infarction in young women in relation to plasma total homocysteine, folate, and a common variant in the methylenetetrahydrofolate reductase gene. Circulation 1997; 96:412-7.

Selzer RR, Rosenblatt DS, Laxova R, Hogan K. Adverse effect of nitrous oxide in a child with 5,10-methylenetetrahydrofolate reductase deficiency. N Engl J Med 2003; 349:45-50.

Shen H, Newmann AS, Hu Z et al. Methylenetetrahydrofolate reductase polymorphisms/haplotypes and risk of gastric cancer: a case-control analysis in China. Oncol Rep 2005; 13:355-60.

Singh K, Singh SK, Raman R. MTHFR A1298C polymorphism and idiopathic male infertility. J Postgrad Med 2010; 56:267-9.

Skibola CF, Smith MT, Hubbard A et al. Polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and risk of adult acute lymphocytic leukemia. Blood 2002; 99:3786-91.

Sohda S, Arinami T, Hamada H, Yamada N, Hamaguchi H, Kubo T. Methylenetetrahydrofolate reductase polymorphism and pre-eclampsia. J Med Genet 1997; 34:525-6.

Stocco G, Martelossi S, Sartor F et al. Prevalence of methylenetetrahydrofolate reductase polymorphisms in young patients with inflammatory bowel disease. Dig Dis Sci 2006; 51:474-9.

Talmon T, Scharf J, Mayer E, Lanir N, Miller B, Brenner B. Retinal arterial occlusion in a child with factor V Leiden and thermolabile methylene tetrahydrofolate reductase mutations. Am J Ophthalmol 1997; 124:689-91.

Tanaka T, Scheet P, Giusti B et al. Genome-wide association study of vitamin B6, vitamin B12, folate, and homocysteine blood concentrations. Am J Hum Genet 2009; 84:477-82.

Todt U, Freudenberg J, Goebel I et al. MTHFR C677T polymorphism and migraine with aura. Ann Neurol 2006; 60:621-2.

Ubbink JB, Christianson A, Bester MJ et al. Folate status, homocysteine metabolism, and methylene tetrahydrofolate reductase genotype in rural South African blacks with a history of pregnancy complicated by neural tube defects. Metabolism 1999; 48:269-74.

van Bockxmeer FM, Mamotte CD, Vasikaran SD, Taylor RR. Methylenetetrahydrofolate reductase gene and coronary artery disease. Circulation 1997; 95:21-3.

van der Put NM, Gabreëls F, Stevens EM et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 1998; 62:1044-51.

Volcik KA, Blanton SH, Northrup H. Examinations of methylenetetrahydrofolate reductase C677T and A1298C mutations-and in utero viability. Am J Hum Genet 2001; 69:1150-3.

Weger M, Stanger O, Deutschmann H et al. The role of hyperhomocysteinemia and methylenetetrahydrofolate reductase (MTHFR) C677T mutation in patients with retinal artery occlusion. Am J Ophthalmol 2002; 134:57-61.

Xu J, Xu X, Xue L et al. MTHFR c. 1793G>A polymorphism is associated with congenital cardiac disease in a Chinese population. Cardiol Young 2010; 20:318-26.

Zalavras ChG, Giotopoulou S, Dokou E et al. Lack of association between the C677T mutation in the 5,10-methylenetetrahydrofolate reductase gene and venous thromboembolism in Northwestern Greece. Int Angiol 2002; 21:268-71.

Zárate R, González-Santigo S, de la Haba J et al. GSTP1 and MTHFR polymorphisms are related with toxicity in breast cancer adjuvant anthracycline-based treatment. Curr Drug Metab 2007; 8:481-6.

Zhang C, Xie B, Fang Y et al. Influence of maternal MTHFR A1298C polymorphism on the risk in offspring of schizophrenia. Brain Res 2010; 1320:130-4.

Zetterberg H, Regland B, Palmér M et al. Increased frequency of combined methylenetetrahydrofolate reductase C677T and A1298C mutated alleles in spontaneously aborted embryos. Eur J Hum Genet 2002; 10:113-8.

MT-ND1 (mitochondrially encoded NADH dehydrogenase 1)

Brown MD, Voljavec AS, Lott MT, Torroni A, Yang CC, Wallace DC. Mitochondrial DNA complex I and III mutations associated with Leber’s hereditary optic neuropathy. Genetics 1992; 130:163-73.

Deng GH, Zhou X, Pang ZY, Liu SM, Xie Y. Study on mitochondrial function of ND1 gene with 3316 G→A mutation in human diabetes. Zhonghua Yi Xue Za Zhi 2009; 89:2822-6.

Kirby DM, McFarland R, Ohtake A et al. Mutations of the mitochondrial ND1 gene as a cause of MELAS. J Med Genet 2004; 41:784-9.

Opdal SH, Rognum TO, Torgersen H, Vege A. Mitochondrial DNA point mutations detected in four cases of sudden infant death syndrome. Acta Paediatr 1999; 88:957-60.

Shoffner JM, Brown MD, Torroni A et al. Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease patients. Genomics 1993; 17:171-84.

Zifa E, Theotokis P, Kaminari A et al. A novel G3337A mitochondrial ND1 mutation related to cardiomyopathy co-segregates with tRNALeu(CUN) A12308G and tRNAThr C15946T mutations. Mitochondrion 2008; 8:229-36.

MT-ND4 (mitochondrially encoded NADH dehydrogenase 4)

Abu-Amero KK, Al-Boudari OM, Mousa A et al. The mitochondrial DNA variant 16189T>C is associated with coronary artery disease and myocardial infarction in Saudi Arabs. Genet Test Mol Biomarkers 2010; 14:43-7.

Danks RA, Dorevitch M, Cummins JT, Byrne E. Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS): adolescent onset with severe cerebral edema. Aust N Z J Med 1988; 18:69-72.

Fischel-Ghodsian N. Genetic factors in aminoglycoside toxicity. Ann N Y Acad Sci 1999; 884:99-109.

Ji Y, Zhang AM, Jia X et al. Mitochondrial DNA haplogroups M7b1’2 and M8a affect clinical expression of leber hereditary optic neuropathy in Chinese families with the m. 11778G→a mutation. Am J Hum Genet 2008; 83:760-8.

Marchbanks RM, Ryan M, Day IN, Owen M, McGuffin P, Whatley SA. A mitochondrial DNA sequence variant associated with schizophrenia and oxidative stress. Schizophr Res 2003; 65:33-8.

Sakuta R, Goto Y, Nonaka I, Horai S. An A-to-G transition at nucleotide pair 11084 in the ND4 gene may be an mtDNA polymorphism. Am J Hum Genet 1993; 53:964-5.

Torroni A, Petrozzi M, D’Urbano L et al. Haplotype and phylogenetic analyses suggest that one European-specific mtDNA background plays a role in the expression of Leber hereditary optic neuropathy by increasing the penetrance of the primary mutations 11778 and 14484. Am J Hum Genet 1997; 60:1107-21.

MT-ND6 (mitochondrially encoded NADH dehydrogenase 6)

Brown MD, Sun F, Wallace DC. Clustering of Caucasian Leber hereditary optic neuropathy patients containing the 11778 or 14484 mutations on an mtDNA lineage. Am J Hum Genet 1997; 60:381-7.

Piccoli C, Ripoli M, Quarato G et al. Coexistence of mutations in PINK1 and mitochondrial DNA in early onset parkinsonism. J Med Genet 2008; 45:596-602.

Ravn K, Wibrand F, Hansen FJ, Horn N, Rosenberg T, Schwartz M. An mtDNA mutation, 14453G→A, in the NADH dehydrogenase subunit 6 associated with severe MELAS syndrome. Eur J Hum Genet 2001; 9:805-9.

Solano A, Roig M, Vives-Bauza C et al. Bilateral striatal necrosis associated with a novel mutation in the mitochondrial ND6 gene. Ann Neurol 2003; 54:527-30.

Ugalde C, Triepels RH, Coenen MJ et al. Impaired complex I assembly in a Leigh syndrome patient with a novel missense mutation in the ND6 gene. Ann Neurol 2003; 54:665-9.

MTNR1A (melatonin receptor 1A)

Agomelatine: AGO 178, AGO178, S 20098. Drugs R D 2008; 9:177-83.

Arendt J, Rajaratnam SM. Melatonin and its agonists: an update. Br J Psychiatry 2008; 193:267-9.

Carcangiu V, Vacca GM, Mura MC et al. Relationship between MTNR1A melatonin receptor gene polymorphism and seasonal reproduction in different goat breeds. Anim Reprod Sci 2009; 110:71-8.

Chaste P, Clement N, Mercati O et al. Identification of pathway-biased and deleterious melatonin receptor mutants in autism spectrum disorders and in the general population. PLoS One 2010. doi:10. 1371/journal. pone. 0011495.

Conway S, Mowat ES, Drew JE, Barrett P, Delagrange P, Morgan PJ. Serine residues 110 and 114 are required for agonist binding but not antagonist binding to the melatonin MT(1) receptor. Biochem Biophys Res Commun 2001; 282:1229-36.

de Bodinat C, Guardiola-Lemaitre B, Mocaër E, Renard P, Muñoz C, Millan MJ. Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nat Rev Drug Discov 2010; 9:628-42.

Dolder CR, Nelson M, Snider M. Agomelatine treatment of major depressive disorder. Ann Pharmacother 2008; 42:1822-31.

Dubovsky SL, Warren C. Agomelatine, a melatonin agonist with antidepressant properties. Expert Opin Investig Drugs 2009; 18:1533-40.

Ebisawa T, Kajimura N, Uchiyama M et al. Alleic variants of human melatonin 1a receptor: function and prevalence in subjects with circadian rhythm sleep disorders. Biochem Biophys Res Commun 1999; 262:832-7.

Ghosh A, Hellewell JS. A review of the efficacy and tolerability of agomelatine in the treatment of major depression. Expert Opin Investig Drugs 2007; 16:1999-2004.

Hardeland R, Poeggeler B, Srinivasan V, Trakht I, Pandi-Perumal SR, Cardinali DP. Melatonergic drugs in clinical practice. Arzneimittelforschung 2008; 58:1-10.

Kennedy SH. Agomelatine: efficacy at each phase of antidepressant treatment. CNS Drugs 2009; 23 Suppl 2:41-7.

Lai IC, Chen ML, Wang YC et al. Analysis of genetic variations in the human melatonin receptor (MTNR1A, MTNR1B) genes and antipsychotics-induced tardive dyskinesia in schizophrenia. World J Biol Psychiatry 2011; 12:143-8.

Loiseau F, Le Bihan C, Hamon M, Thiébot MH. Effects of melatonin and agomelatine in anxiety-related procedures in rats: interaction with diazepam. Eur Neuropsychopharmacol 2006; 16:417-28.

Mésangeau C, Pérès B, Descamps-François C et al. Design, synthesis and pharmacological evaluation of novel naphthalenic derivatives as selective MT(1) melatoninergic ligands. Bioorg Med Chem 2010; 18:3426-36.

Migaud M, Daveau A, Malpaux B. MTNR1A melatonin receptors in the ovine premammillary hypothalamus: day-night variation in the expression of the transcripts. Biol Reprod 2005; 72:393-8.

Nakamura E, Kozaki K, Tsuda H et al. Frequent silencing of a putative tumor suppressor gene melatonin receptor 1 A (MTNR1A) in oral squamous-cell carcinoma. Cancer Sci 2008; 99:1390-400.

Olié JP, Kasper S. Efficacy of agomelatine, a MT1/MT2 receptor agonist with 5-HT2C antagonistic properties, in major depressive disorder. Int J Neuropsychopharmacol 2007; 10:661-73.

Owen RT. Agomelatine: a novel pharmacological approach to treating depression. Drugs Today 2009; 45:599-608.

Popoli M. Agomelatine: innovative pharmacological approach in depression. CNS Drugs 2009; 23 Suppl 2:27-34.

Ramírez O, Tomàs A, Barragan C, Noguera JL, Amills M, Varona L. Pig melatonin receptor 1a (MTNR1A) genotype is associated with seasonal variation of sow litter size. Anim Reprod Sci 2009; 115:317-22.

San L, Arranz B. Agomelatine: a novel mechanism of antidepressant action involving the melatonergic and the serotonergic system. Eur Psychiatry 2008; 23:396-402.

Slaugenhaupt SA, Roca AL, Liebert CB, Altherr MR, Gusella JF, Reppert SM. Mapping of the gene for the Mel1a-melatonin receptor to human chromosome 4 (MTNR1A) and mouse chromosome 8 (Mtnr1a). Genomics 1995; 27:355-7.

Srinivasan V, Pandi-Perumal SR, Trahkt I et al. Melatonin and melatonergic drugs on sleep: possible mechanisms of action. Int J Neurosci 2009; 119:821-46.

Zlotos DP. Recent advances in melatonin receptor ligands. Arch Pharm 2005; 338:229-47.

MTNR1B (melatonin receptor 1B)

Agomelatine: AGO 178, AGO178, S 20098. Drugs R D 2008; 9:177-83.

Arendt J, Rajaratnam SM. Melatonin and its agonists: an update. Br J Psychiatry 2008; 193:267-9.

Conway S, Mowat ES, Drew JE, Barrett P, Delagrange P, Morgan PJ. Serine residues 110 and 114 are required for agonist binding but not antagonist binding to the melatonin MT(1) receptor. Biochem Biophys Res Commun 2001; 282:1229-36.

de Bodinat C, Guardiola-Lemaitre B, Mocaër E, Renard P, Muñoz C, Millan MJ. Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nat Rev Drug Discov 2010; 9:628-42.

Dolder CR, Nelson M, Snider M. Agomelatine treatment of major depressive disorder. Ann Pharmacother 2008; 42:1822-31.

Dubovsky SL, Warren C. Agomelatine, a melatonin agonist with antidepressant properties. Expert Opin Investig Drugs 2009; 18:1533-40.

Dupuis J, Langenberg C, Prokopenko I et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010; 42:105-16.

Ghosh A, Hellewell JS. A review of the efficacy and tolerability of agomelatine in the treatment of major depression. Expert Opin Investig Drugs 2007; 16:1999-2004.

Ha E, Choe BK, Jung KH et al. Positive relationship between melatonin receptor type 1B polymorphism and rheumatoid factor in rheumatoid arthritis patients in the Korean population. J Pineal Res 2005; 39:201-5.

Hardeland R, Poeggeler B, Srinivasan V, Trakht I, Pandi-Perumal SR, Cardinali DP. Melatonergic drugs in clinical practice. Arzneimittelforschung 2008; 58:1-10.

Kennedy SH. Agomelatine: efficacy at each phase of antidepressant treatment. CNS Drugs 2009; 23 Suppl 2:41-7.

Li C, Shi Y, You L, Wang L, Chen ZJ. Association of rs10830963 and rs10830962 SNPs in the melatonin receptor (MTNR1B) gene among Han Chinese women with polycystic ovary syndrome. Mol Hum Reprod 2011; 17:193-8.

Loiseau F, Le Bihan C, Hamon M, Thiébot MH. Effects of melatonin and agomelatine in anxiety-related procedures in rats: interaction with diazepam. Eur Neuropsychopharmacol 2006; 16:417-28.

Mésangeau C, Pérès B, Descamps-François C et al. Design, synthesis and pharmacological evaluation of novel naphthalenic derivatives as selective MT(1) melatoninergic ligands. Bioorg Med Chem 2010; 18:3426-36.

Mórocz M, Czibula A, Grózer ZB et al. Association study of BMP4, IL6, Leptin, MMP3, and MTNR1B gene promoter polymorphisms and adolescent idiopathic scoliosis. Spine 2011; 36:123-30.

Mulder H, Nagorny CL, Lyssenko V, Groop L. Melatonin receptors in pancreatic islets: good morning to a novel type 2 diabetes gene. Diabetologia 2009; 52:1240-9.

Olié JP, Kasper S. Efficacy of agomelatine, a MT1/MT2 receptor agonist with 5-HT2C antagonistic properties, in major depressive disorder. Int J Neuropsychopharmacol 2007; 10:661-73.

Owen RT. Agomelatine: a novel pharmacological approach to treating depression. Drugs Today 2009; 45:599-608.

Popoli M. Agomelatine: innovative pharmacological approach in depression. CNS Drugs 2009; 23 Suppl 2:27-34.

San L, Arranz B. Agomelatine: a novel mechanism of antidepressant action involving the melatonergic and the serotonergic system. Eur Psychiatry 2008; 23:396-402.

Srinivasan V, Pandi-Perumal SR, Trahkt I et al. Melatonin and melatonergic drugs on sleep: possible mechanisms of action. Int J Neurosci 2009; 119:821-46.

Zlotos DP. Recent advances in melatonin receptor ligands. Arch Pharm 2005; 338:229-47.

MTR (5-methyltetrahydrofolate-homocysteine methyltransferase)

Christensen B, Arbour L, Tran P et al. Genetic polymorphisms in methylenetetrahydrofolate reductase and methionine synthase, folate levels in red blood cells, and risk of neural tube defects. Am J Med Genet 1999; 84:151-7.

de Lima EL, da Silva VC, da Silva HD et al. MTR polymorphic variant A2756G and retinoblastoma risk in Brazilian children. Pediatr Blood Cancer 2010; 54:904-8.

Doolin MT, Barbaux S, McDonnell M, Hoess K, Whitehead AS, Mitchell LE. Maternal genetic effects, exerted by genes involved in homocysteine remethylation, influence the risk of spina bifida. Am J Hum Genet 2002; 71:1222-6.

Fong CS, Shyu HY, Shieh JC et al. Association of MTHFR, MTR, and MTRR polymorphisms with Parkinson’s disease among ethnic Chinese in Taiwan. Clin Chim Acta 2011; 412:332-8.

Galbiatti AL, Ruiz MT, Chicote-Biselli PM et al. 5-Methyltetrahydrofolate-homocysteine methyltransferase gene polymorphism (MTR) and risk of head and neck cancer. Braz J Med Biol Res 2010; 43:445-50.

Giusti B, Saracini C, Bolli P et al. Genetic analysis of 56 polymorphisms in 17 genes involved in methionine metabolism in patients with abdominal aortic aneurysm. J Med Genet 2008; 45:721-30.

Goode EL, Potter JD, Bigler J, Ulrich CM. Methionine synthase D919G polymorphism, folate metabolism, and colorectal adenoma risk. Cancer Epidemiol Biomarkers Prev 2004; 13:157-62.

Harmon DL, Shields DC, Woodside JV et al. Methionine synthase D919G polymorphism is a significant but modest determinant of circulating homocysteine concentrations. Genet Epidemiol 1999; 17:298-309.

Kim JW, Park HM, Choi YK, Chong SY, Oh D, Kim NK. Polymorphisms in genes involved in folate metabolism and plasma DNA methylation in colorectal cancer patients. Oncol Rep 2011; 25:167-72.

Kluijtmans LA, Young IS, Boreham CA et al. Genetic and nutritional factors contributing to hyperhomocysteinemia in young adults. Blood 2003; 101:2483-8.

Leclerc D, Campeau E, Goyette P et al. Human methionine synthase: cDNA cloning and identification of mutations in patients of the cblG complementation group of folate/cobalamin disorders. Hum Mol Genet 1996; 5:1867-74.

Mostowska A, Hozyasz KK, Jagodzinski PP. Maternal MTR genotype contributes to the risk of non-syndromic cleft lip and palate in the Polish population. Clin Genet 2006; 69:512-7.

Paz MF, Avila S, Fraga MF et al. Germ-line variants in methyl-group metabolism genes and susceptibility to DNA methylation in normal tissues and human primary tumors. Cancer Res 2002; 62:4519-24.

Rouissi K, Stambouli N, Marrakchi R et al. Smoking and polymorphisms in folate metabolizing genes and their effects on the histological stage and grade for bladder tumors. Bull Cancer 2011; 98:1-10.

Summers CM, Cucchiara AJ, Nackos E et al. Functional polymorphisms of folate-metabolizing enzymes in relation to homocysteine concentrations in systemic lupus erythematosus. J Rheumatol 2008; 35:2179-86.

Tsai MY, Bignell M, Yang F, Welge BG, Graham KJ, Hanson NQ. Polygenic influence on plasma homocysteine: association of two prevalent mutations, the 844ins68 of cystathionine beta-synthase and A(2756)G of methionine synthase, with lowered plasma homocysteine levels. Atherosclerosis 2000; 149:131-7.

Veronese ML, Stevenson JP, Sun W et al. Phase I trial of UFT/leucovorin and irinotecan in patients with advanced cancer. Eur J Cancer 2004; 40:508-14.

Watkins D, Ru M, Hwang HY et al. Hyperhomocysteinemia due to methionine synthase deficiency, cblG: structure of the MTR gene, genotype diversity, and recognition of a common mutation, P1173L. Am J Hum Genet 2002; 71:143-53.

Wilson A, Leclerc D, Saberi F et al. Functionally null mutations in patients with the cblG-variant form of methionine synthase deficiency. Am J Hum Genet 1998; 63:409-14.

Yamaji T, Iwasaki M, Sasazuki S, Sakamoto H, Yoshida T, Tsugane S. Methionine synthase A2756G polymorphism interacts with alcohol and folate intake to influence the risk of colorectal adenoma. Cancer Epidemiol Biomarkers Prev 2009; 18:267-74.

Yu K, Zhang J, Zhang J et al. Methionine synthase A2756G polymorphism and cancer risk: a meta-analysis. Eur J Hum Genet 2010; 18:370-8.

MT-RNR1 (mitochondrially encoded 12S RNA)

Bu X, Xing G, Yan M. Audiological and molecular findings in a large family with maternally inherited sensorineural hearing loss. J Audiol Med 2000; 9:61-9.

Conrad DJ, Stenbit AE, Zettner EM, Wick I, Eckhardt C, Hardiman G. Frequency of mitochondrial 12S ribosomal RNA variants in an adult cystic fibrosis population. Pharmacogenet Genomics 2008; 18:1095-102.

Guan MX, Yan Q, Li X et al. Mutation in TRMU related to transfer RNA modification modulates the phenotypic expression of the deafness-associated mitochondrial 12S ribosomal RNA mutations. Am J Hum Genet 2006; 79:291-302.

Li R, Xing G, Yan M et al. Cosegregation of C-insertion at position 961 with the A1555G mutation of the mitochondrial 12S rRNA gene in a large Chinese family with maternally inherited hearing loss. Am J Med Genet 2004; 124:113-7.

Santorelli FM, Tanji K, Manta P et al. Maternally inherited cardiomyopathy: an atypical presentation of the mtDNA 12S rRNA gene A1555G mutation. Am J Hum Genet 1999; 64:295-300.

MT-TK (mitochondrially encoded tRNA lysine)

Finsterer J. Management of mitochondrial stroke-like-episodes. Eur J Neurol 2009; 16:1178-84.

Kameoka K, Isotani H, Tanaka K et al. Novel mitochondrial DNA mutation in tRNA(Lys) (8296A→G) associated with diabetes. Biochem Biophys Res Commun 1998; 245:523-7.

Mancuso M, Galli R, Pizzanelli C, Filosto M, Siciliano G, Murri L. Antimyoclonic effect of levetiracetam in MERRF syndrome. J Neurol Sci 2006; 243:97-9.

Santorelli FM, Mak SC, El-Schahawi M et al. Maternally inherited cardiomyopathy and hearing loss associated with a novel mutation in the mitochondrial tRNA(Lys) gene (G8363A). Am J Hum Genet 1996; 58:933-9.

Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell 1990; 61:931-7.

Tiranti V, Carrara F, Confalonieri P et al. A novel mutation (8342G→A) in the mitochondrial tRNA(Lys) gene associated with progressive external ophthalmoplegia and myoclonus. Neuromuscul Disord 1999; 9:66-71.

Verma A, Piccoli DA, Bonilla E, Berry GT, DiMauro S, Moraes CT. A novel mitochondrial G8313A mutation associated with prominent initial gastrointestinal symptoms and progressive encephaloneuropathy. Pediatr Res 1997; 42:448-54.

MT-TL1 (mitochondrially encoded tRNA leucine 1 (UUA/G))

Gattermann N, Wulfert M, Junge B, Germing U, Haas R, Hofhaus G. Ineffective hematopoiesis linked with a mitochondrial tRNA mutation (G3242A) in a patient with myelodysplastic syndrome. Blood 2004; 103:1499-502.

Goto Y, Nonaka I, Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 1990; 348:651-3.

Jaksch M, Lochmuller H, Schmitt F, Volpel B, Obermaier-Kusser B, Horvath R. A mutation in mt tRNALeu(UUR) causing a neuropsychiatric syndrome with depression and cataract. Neurology 2001; 57:1930-1.

Kobayashi Y, Momoi MY, Tominaga K. Respiration-deficient cells are caused by a single point mutation in the mitochondrial tRNA-Leu (UUR) gene in mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS). Am J Hum Genet 1991; 49:590-9.

Moraes CT, Ciacci F, Bonilla E et al. Two novel pathogenic mitochondrial DNA mutations affecting organelle number and protein synthesis. Is the tRNA(Leu(UUR)) gene an etiologic hot spot? J Clin Invest 1993; 92:2906-15.

Morten KJ, Cooper JM, Brown GK, Lake BD, Pike D, Poulton J. A new point mutation associated with mitochondrial encephalomyopathy. Hum Mol Genet 1993; 2:2081-7.

Ogle RF, Christodoulou J, Fagan E et al. Mitochondrial myopathy with tRNA(Leu(UUR)) mutation and complex I deficiency responsive to riboflavin. J Pediatr 1997; 130:138-45.

Opdal SH, Rognum TO, Torgersen H, Vege A. Mitochondrial DNA point mutations detected in four cases of sudden infant death syndrome. Acta Paediatr 1999; 88:957-60.

Seneca S, Verhelst H, de Meirleir L et al. A new mitochondrial point mutation in the transfer RNA(Leu) gene in a patient with a clinical phenotype resembling Kearns-Sayre syndrome. Arch Neurol 2001; 58:1113-8.

Silvestri G, Santorelli FM, Shanske S et al. A new mtDNA mutation in the tRNA(Leu(UUR)) gene associated with maternally inherited cardiomyopathy. Hum Mutat 1994; 3:37-43.

Sweeney MG, Bundey S, Brockington M, Poulton KR, Winer JB, Harding AE. Mitochondrial myopathy associated with sudden death in young adults and a novel mutation in the mitochondrial DNA leucine transfer RNA(UUR) gene. Q J Med 1993; 86:709-13.

MTTP (microsomal triglyceride transfer protein)

Benayoun L, Granot E, Rizel L, Allon-Shalev S, Behar DM, Ben-Yosef T. Abetalipoproteinemia in Israel: evidence for a founder mutation in the Ashkenazi Jewish population and a contiguous gene deletion in an Arab patient. Molec Genet Metab 2007; 90:453-57.

Blakely EL, Trip SA, Swalwell H et al. A new mitochondrial transfer RNAPro gene mutation associated with myoclonic epilepsy with ragged-red fibers and other neurological features. Arch Neurol 2009; 66:399-402.

Cai T, Dufour JF, Muellhaupt B et al. Viral genotype-specific role of PNPLA3, PPARG, MTTP and IL28B in Hepatitis C virus-associated steatosis. J Hepatol 2011; 55:529-35.

Chen L, Yoshino G, Maeda E, Zeng S. Effect of microsomal triglyceride transfer protein gene polymorphism in the promoter region on dyslipidemia in type 2 diabetic subjects. Chin Med J 2003; 116:215-7.

Cuchel M, Bloedon LT, Szapary PO et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. New Eng J Med 2007; 356:148-56.

Cuchel M, Rader DJ. Reply to Hegele Familial hypercholesterolemia. New Eng J Med 2007; 356:1779-80.

Grasbon-Frodl EM, Kösel S, Sprinzl M, von Eitzen U, Mehraein P, Graeber MB. Two novel point mutations of mitochondrial tRNA genes in histologically confirmed Parkinson disease. Neurogenetics 1999; 2:121-7.

Gregg RE, Wetterau JR. The molecular basis of abetalipoproteinemia. Curr Opin Lipidol 1994; 5:81-6.

Moraes CT, Ciacci F, Bonilla E, Ionasescu V, Schon EA, DiMauro S. A mitochondrial tRNA anticodon swap associated with a muscle disease. Nat Genet 1993; 4:284-8.

Rubin D, Helwig U, Pfeuffer M et al. A common functional exon polymorphism in the microsomal triglyceride transfer protein gene is associated with type 2 diabetes, impaired glucose metabolism and insulin levels. J Hum Genet 2006; 51:567-74.

Xie Y, Newberry EP, Young SG et al. Compensatory increase in hepatic lipogenesis in mice with conditional intestine-specific Mttp deficiency. J Biol Chem 2006; 281:4075-86.

Yamada Y, Ando F, Shimokata H. Association of a microsomal triglyceride transfer protein gene polymorphism with blood pressure in Japanese women. Int J Mol Med 2006; 17:83-8.

 A B C D E F G H I K L M N O P R S T U V W X Z